

Numerical Modeling of Multi-Fan Air Distribution
Systems for Research Laboratories
(Draft Report)

NETSAL & ASSOCIATES
16182 Mount Lowe Circle
Fountain Valley, CA 92708

Principal Investigator:

 September 25, 1998
 Robert J. Tsal, Ph.D. Date

 2

NUMERICAL MODELING OF MULTI-FAN AIR
DISTRIBUTION SYSTEMS FOR RESEARCH LABORATORIES

EXECUTIVE SUMMARY..3

ABSTRACT..6

1. INTRODUCTION..6

2. PROBLEM DEFINITION...8

2.1 TOPOLOGY OF AIR FLOW SYSTEMS...8
2.2 HYDRAULICS OF AIR FLOW SYSTEMS..12

2.2.1 Ducts ..12
2.2.2 Fittings..16
2.2.3 Infiltration and exfiltration..16
2.2.4 Fans ...16
2.2.5 Fume hoods..18
2.2.6 Air flow systems ...18

3. MATHEMATICAL AND ENGINEERING METHODS FOR NETWORK SIMULATION...23

3.1 BRANCHED SYSTEMS..23
3.2 CYCLE SYSTEMS..28

3.2.2 Newton’s method ...29
3.2.3 Broyden’s method ...33
3.2.4 Merit functions: nonlinear equations as optimal problem ..35
3.2.5 Global affine invariant Newton’s technique ...35
3.2.6 Tensor methods..43
3.2.7 Methods based on homotopy ..52
3.2.8 Solving linear equations ..61

3.3 CONTROL SYSTEMS ...72
3.4 FINAL DISCUSSION ..78

4. PROBLEM FORMALIZATION..78

4.1 TOPOLOGY ...79
4.2 CONTROL FUNCTION ...91
4.3 ELEMENTS..91

5. MAIN FLOW CHART...97

6. PRINCIPLES OF SOFTWARE DEVELOPMENT.. 101

7. SOFTWARE IMPLEMENTATION PLAN... 102

8. CONCLUSION ... 105

9. REFERENCES AND BIBLIOGRAPHY.. 106

 3

EXECUTIVE SUMMARY

Studies show that air conditioning systems are one of the major energy consumers in laboratories. The
cost of air conditioning systems can exceed 30% of the total first cost for the entire laboratory building.
Proper system design is one of the efficient ways of reducing the life cycle cost and enhancing the
performance of air conditioning systems. Depending on requirements, laboratory spaces must be either
under positive or under negative pressure. If infiltration or exfiltration exceeds design limits it may result in
room over- or under-pressurization, loss of pressure zoning, substantial heat and energy loss, considerable
egress, dust and dirt carryover, and airflow destabilization. Actual operating conditions in a laboratory vary
and can result in imbalance, and airflow destabilization beyond design limits. Such conditions can be
inefficient, unsafe, and negatively impact the work being done in the laboratories.

Engineers have no practical technique to simulate actual airflow, pressures, fan operating points and the
effect of system control in multi-fan laboratory air conditioning systems. That leads to unexpected
conditions during operation of the system.

The purpose of this project is to define the problem and to develop the theory for numerical modeling of
multi-fan systems serving multiple laboratories including determination of pressure in the workspaces and
the position of control elements. This modeling will serve both variable air volume (VAV) and constant
volume (CV) systems.

The necessity for simulation appears in many HVAC designs, such as determining operating performance,
investigating system stability under different operating conditions, retrofitting, emergency conditions and
accidents, fire/smoke protection, pressure and airflow balancing after system modification, and equipment
failure.

Multiple laboratories located in the same building are usually served by one or more common supply
systems and multiple exhaust systems, individual, manifolded, centralized or combined. Topologically the
laboratory air distribution systems can be represented by a number of isomorphic tree-graphs connected at
the terminals.

The general purpose of the project is to develop and implement a practical tool which is a computer code
that can be used by HVAC engineers in studying, designing, and retrofitting of air distribution systems in
research laboratories. Numerical modeling of multi-fan air distribution systems for research laboratories is
the first part of this project.

The proposed computer program, named Bellair, will allow HVAC engineers to calculate actual airflow,
pressures, and fan operating points in laboratory multi-fan air distribution systems as well as static pressure
in laboratory spaces at different operating conditions where space pressurization, confinement zoning, and
flow/pressure stability are the most important requirements. The computer simulation program will allow
to play "what-if" scenarios which are most important to provide flexibility for laboratories with changing
technology.

The computer program Bellair will be capable of modeling the control of each fan or damper from a

 4

sensor located in any place of the system selected by the user including ducts, laboratories, cabinets,
exhaust stack discharge, etc. The control parameters could be static pressure, total pressure, airflow
volume, air velocity, temperature, and pressure or temperature difference.

Network simulation problem is considered to be solved when the iteration process that describes
steady-state hydraulic and control conditions is converged. Such problem requires a solution for
a large system of simultaneous nonlinear algebraic equations. Therefore one of the main goals of
this project is the selection of a numerical method for solving such equations. Numerous methods
capable of solving nonlinear algebraic equations for both branched and cycled networks
simulation are studied. This includes for branched systems: Equivalent Nozzles, Unit Flow, Duct
Characteristic, Equivalent Resistance, Steepest Descent, and T-Method with air leakage. As for
cycle systems the more promising approaches are the family of Newton Affine Invariant methods, the
Tensor methods, and the Homotopy methods. If a good initial guess is known, the best choice is one of
the Newton Affine Invariant methods. For a comparatively large problem, when time for solution is
significant, the Tensor methods are a good choice. For the most practical cases, when either: (1) time
is deficient to search for a good initial guess, (2) automation is needed for different types of technical
solutions evaluation, or (3) parametric evaluation is necessary, Homotopy methods are the best. All three
approaches are expected to be included into the computer code and selected automatically during the
calculation.

All methods for solving nonlinear equations involve the solution of many sets of linear algebraic equations.
For small tasks it is possible to use simple methods based on direct solution techniques. Whenever there is
sparse matrix, sparse mode elimination techniques may be successfully used. For large and super large
tasks the Krylov’s method expected to be applied.

Control system simulation requires the use of mathematical programming technique to get the minimization
of an objective function that describes residuals. The Vicente’s algorithm is suggested for solving this
problem.

There are four major steps of multi-fan system simulation: (1) defining air flows and pressures for initially
set control devices, (2) adjustment of positions of control devices in accordance with their set-up, (3)
random selection of the positions of fume hood sashes based on their loading schedules, and (4) system
performance analysis. As a result of such calculation user receives airflow, pressures, and velocities at all
system sections and pressures at all system nodes. This includes workspaces, manifolds, fume hood inlet
sashes, stack exhausts, and ductworks. User also receives fan operating points, position of all system
control devices, and electrical energy consumption. Air system performance planed to be studied by
randomly selected positions of sashes and other laboratory units. As soon as user inputs the loading
schedule for each unit, computer randomizes the position of sashes/units and calculates the total usage
(diversity) factor as a recommendation for optimum design.

There are four major fragments of the Bellair program: (1) preprocessor that contains of data input,
verification, and printout, (2) solver that includes calculation routines, (3) postprocessor that performs
verification and printout of the results, (4) populated database.

The main platform for the Bellair code is MS Windows 95/98/NT for IBM PC computers, programming
language is C++, recommended compiler is Visual C++. Demo of the program planed to be installed on the

 5

Internet. Considering inexperienced user with knowledge in duct design but not in duct simulation, the
program must be user-friendly. Data input should be checked while entering. The messages should be
divided into two classes: fatal and warning. They should describe the errors as well as present
recommendations for correction. Full capability of inserting/copying/moving/deleting any part of the data
should be implemented by using data blocking. Help screens should include examples. Graphic
representation shall be used for fitting selection. The practicality of graphic input for topology and length
has to be investigated. Following are the main steps of development and implementation of the Bellair
program: architecture, coding and debugging, testing, data base development and population, program
installation, Demo, user manual, and program support.

 6

Abstract

The objective of this project is to develop a concept for computer modeling of multi-fan air distribution
systems in research laboratories. Numerical model based on this concept will be capable of analyzing
HVAC equipment, control elements, laboratory equipment, and laboratory spaces as one generalized
system. Constant volume, variable volume, central supply with many exhaust air flow systems are
considered. The goal is to determine the air flows and pressures in a steady-state conditions after initial
data such as the position of fume hood sashes are fixed and the control sensors, controllers, and actuators
have already established stability. Statistical analysis of opening fume hood sashes based on their
operational schedules will allow analyzing the effect of pressurization and evaluating the efficiency of
generalized air distribution system. Network simulation problem requires a solution for
a large system of simultaneous nonlinear algebraic equations. Numerous methods capable of solving
such equations are studied. The most promising approaches are the family of Newton Affine Invariant
methods, the Tensor methods, and the Homotopy methods. If a good initial guess is known, the best
choice is one of the Newton Affine Invariant methods. For a comparatively large problem, when time
for solution is significant, the Tensor methods are a good choice. For the most practical cases, when
either: (1) time is deficient to search for a good initial guess, (2) automation is needed for different types
of technical solutions evaluation, or (3) parametric evaluation is necessary, Homotopy methods are the
best. All three approaches are expected to be included into the computer code and selected automatically
during the calculation. This project consists of the implementation plan for developing a multi-fan
laboratory air flow simulation computer program including computer code development, data base
population, testing, and support.

1. Introduction

Studies show that air conditioning systems are among the major energy consumers in laboratories. The
cost of air-conditioning systems can exceed 30% of the total first cost for the entire laboratory building
(Neuman and Guven, 1988). Proper system design is one of the efficient ways of reducing life-cycle cost
and enhancing performance of air conditioning systems. Actual operating conditions in a laboratory served
by many supply and exhaust fans vary and can result in under- or over-pressurization, imbalance, and air
flow destabilization beyond design limits. Such conditions can be inefficient, unsafe, and negatively impact
the work being done in the laboratories. Engineers have no practical tool to calculate actual air flows,
pressures, fan operating points and the effect of system control in multi-fan laboratory air-conditioning
systems.

Negative pressure confinements are very important for many laboratories dealing with harmful substances,
such as nuclear materials. Positive pressure confinements are used in the "clean rooms” in order to
prevent them from contamination. In some laboratories negative or positive pressure originates air
infiltration or exfiltration, and creates a leakage through doorway slits and construction cracks. On the
other hand, high pressure in workspace is also undesirable. If infiltration or exfiltration exceeds design
limits it may result in room over- or under-pressurization, loss of pressure zoning, substantial heat and
energy loss, considerable egress, dust and dirt carryover, and air flow destabilization.

 7

The need to calculate flow distribution and internal static pressure occurs any time that an engineer is
studying the effect of air flow system performance and control. The necessity for simulation appears in
many HVAC designs, such as determining system operating performance, investigating system stability
under different operating conditions, system retrofitting, emergency conditions and accidents, fire/smoke
protection systems, pressure and air flow balancing after system modification, and equipment failure.

Due to problem complexity, this is just a first attempt to develop a practical engineering tool for multi-fan
multi-lab system simulation in such wide range, which combines air flow distribution with control system
and statistical analysis of equipment loading.

Quality multi-fan system design can be achieved only by using a comprehensive computer program. This
project is targeted to the development and implementation of such computer program that will be used by
HVAC engineers in design and retrofitting of air distribution system in research laboratories. The
proposed program will allow HVAC engineer to calculate actual air flows, pressures, and fan operating
points in laboratory multi-fan systems as well as the static pressure in laboratory spaces at different
operating conditions where space pressurization, confinement pressure zoning, and flow/pressure stability
are the most important requirements. Such computer simulation program will allow the engineer to play
"what-if" scenarios that are most important in providing flexibility for laboratories with changing
technology.

This computer program is planned to be distributed through the Internet free of charge and will serve
companies which are involved in design, testing, and balancing of air conditioning systems for laboratories
as well as the laboratory staff responsible for HVAC systems maintenance.

The purpose of the this part of the project is to define the problem, to develop the theory for a numerical
modeling of multi-fan multi-lab system including determination of air pressure in the work space (typical
configuration in a laboratory) and to write a plan for development, implementation, and support of
computer code.

The project is divided into the following tasks:

Task One . Problem definition.
 The problems of multi-fan air flow distribution was identified and classified. The majority

of multi-fan problems can be described by a system of nonlinear simultaneous algebraic
equations. The problem definition consists topologic and hydraulic description of the air
distribution systems as well as the main requirements, types of calculation, limitations and,
finally, problem formulation and main calculation flow chart. Network simulation problem
is considered to be solved when the iteration process that describes steady-state hydraulic
and control conditions for a given position of fume hood sashes in the network is
converged. The next step of problem solution is the statistical selection of sashes
positions based on their schedules. Global simulation problem is considered to be solved
when the results of the statistical analyses describe the behavior of the system under
different combination of sash positions.

Task Two. Analysis of existing methods.
 Comparing existing numerical methods for solving multi-fan air flow distribution problems.

 8

 The existing methods under this study were compared and their strengths and
shortcomings have been described and studied.

Task Three. Problem formalization.

Topology and control principles formalization is a necessary step in development of a
numerical model.

Task Four. Numerical model development.
 Formalized network has been used to describe the numerical model. The most beneficial

methods for solving a system of nonlinear algebraic simultaneous equations have been
selected and their ability to receive a fast convergence was studied.

Task Five . Software implementation plan development.
 Development of an implementation plan to create, evaluate, and organize technical support

of a computer program for multi-fan air flow systems simulation.

2. Problem Definition

Multiple laboratories located in the same building are usually served by a limited number of common supply
systems but multiple number of exhaust systems, individual, manifolded, centralized, or combined. Such
supply and exhaust systems serving rooms and corridors, fume hoods (FH), glove boxes (GB), biological
safety cabinets (BSC) or other equipment, mostly with varying operational flow requirements.
For Constant Volume systems (CV) the supply and exhaust air flows once established are kept constant
regardless the change of operation conditions. This is why CV systems are mostly economically
inefficient and used in laboratories where supply/exhaust air must always be at the same quantities, like in
many nuclear laboratories.

For Variable Volume Systems (VAV) air flow depends on operation schedule and can be reduced or
sometimes even closed when equipment is in partial use or in no use.

2.1 Topology of air flow systems

Observation of various air flow systems makes it clear that they possess topological unity, according to
which any network system can be seen as a version of a general system theory - graph theory. A set of
nodes and arcs, where each arc is contained between two nodes is called a graph. Therefore, a drawing
of any air flow network system is a graph.

In most cases flat graphs that corresponds to flat networks will be analyzed. However, crossing of arcs
on several levels can also take place.

Every node may have one or several corresponding arcs. Their number is called the degree of the
node . Line on a graph, which does not go through any node more than once is called a path.

If a line goes through each arc only once, it is called a chain. A cycle is a closed chain. If a chain can

 9

connect every pair of nodes in a graph, this graph is called linked. A linked graph that does not contain
cycles is called a tree. A graph containing cycles corresponds to circulation engineering systems (for
example, district heating system). Any branching system is a tree. For every pair of nodes in a tree there
is one and only one chain that links them.

Let us going to look at trees containing a special node, a root. In aerodynamic systems a root
corresponds to a fan or a compressor. Of course, a rooted tree system can contain more than one root.

A chain connecting a root with a hanging node of a tree is called a branch. Therefore, in most common
one-root trees the number of branches is equal to the number of hanging nodes - leaves. A node to
which two arcs are adjacent is called an elbow. If there are more than two arcs, the node is called a star.

A unique property of the graphs is the flow of their nodes. Graphs are positive or negative depending on
direction of their flow. Direction of flow corresponds to supply, return, and exhaust air flow systems.

All single-root trees are characterized by an important property: every group of joined arcs contains only
one arc the flow in which is equal to the sum of all other arc flows with the opposite sign. Such arc is
called parent section, and all other joined arcs are called children sections . For example, for a system
in the Fig.1:

 Node 1: children - 1, 2, 3, parent - 6;
 Node 2: children - 4, 5, 6, parent - 7.

 Fig.1 Tree-graph

During calculation of air flow distribution in networks it is necessary to deal either with dispersion/
gathering of the flowing medium in points of consumption, or with heat transfer. In case of heat transfer
dispersion/gathering is not required, and the medium returns to the charger (fan, pump, compressor). This
creates two isomorphic branched systems (supply and return), connected at the points of consumption and
at the root. Such systems are called circulation systems . In most cases their supply and return subtrees
are similar. A good example of such system is district heating and cooling.
Similar configuration takes place in air conditioning systems if supply and exhaust are considered as two
tree-graphs jointed by the roots and by the terminal nodes that can be rooms, laboratories, common spaces,
or corridors. For laboratories such systems can be more complicated, since they include many exhaust
systems with fans from fume nodes.

7 6 2

4 1

5 3

Root

 10

Algebraic description of graph topology is done using matrices of linkages and joints.

Square matrix A=(aij) with n rows and n columns is called a matrix of linkages if aij is an element in the
row i and column j that characterizes presence and sign of an arc in relation to a node i. If the flow is
directed from node j to node i, then aij = 1; in all other cases aij = 0. For example, the following graph
includes 2 cycles, 7 arcs, and 6 nodes (Fig.2):

 Figure 2. Two-cycle graph

Matrix A for this graph is

 1 2 3 4 5 6
1 0 0 0 0 0 0
2 1 0 0 0 0 0
3 0 1 0 0 0 0
4 0 0 1 0 0 0
5 0 1 0 1 0 0
6 1 0 0 0 1 0

Connection between arcs p1, p2, ... p÷, and nodes x1, x2, ... x÷ of a graph are characterized with the first
matrix of incidence, ËI , where

 -1 if pj comes out of xi;
 ëij = { +1 if pj goes into xi;
 0 if pj is not joined to xi;
For graph on Fig.2 the matrix is:

 1 2 3 4 5 6
1 -1 1 0 0 0 0

1 2 3

6 5 4

7 2 5

1 4

3 6

 11

2 0 -1 0 0 1 0
3 0 0 0 0 -1 1
4 0 -1 1 0 0 0
5 0 0 -1 1 0 0
6 0 0 0 -1 1 0
7 -1 0 0 0 0 1

The second matrix of incidence, ËII, can also be made. It connects arcs with cycle (cycle graphs) or arcs
with branches (tree graphs).

 1 2
1 1 0
2 1 1
3 1 0
4 0 1
5 0 1
6 0 1
7 1 0

Sometime laboratory ventilation systems have unique topology that includes two symmetrical
trees connected in the hanging nodes (leaves). Figure 3 represents such topology

 Figure 3. Six-arcs symmetric trees

Matrix A for this graph is

 1 2 3 4 5 6
1 0 0 0 0 0 0

1 2 3

6 5 4

2 5

1 4

3 6

 12

2 1 0 0 0 0 0
3 0 1 0 0 0 0
4 0 0 1 0 0 0
5 0 1 0 1 0 0
6 0 0 0 0 1 0

 The first matrix of incidence, ËI , is:

 1 2 3 4 5 6
1 -1 1 0 0 0 0
2 0 -1 0 0 1 0
3 0 0 0 0 -1 1
4 0 -1 1 0 0 0
5 0 0 -1 1 0 0
6 0 0 0 -1 1 0

The second matrix of incidence, ËII, for this graph is:

 1
1 0
2 1
3 0
4 1
5 1
6 1

2.2 Hydraulics of air flow systems

 2.2.1 Ducts

The Darcy-Weisbach equation for round and rectangular ducts is (ASHRAE 1997):

Round:
cg

V
C

D
fL

P
2

2 ρ





 +=∆ ∑ (2.1a)

 where:
 ∆P = total pressure loss, Pa [in.WG]
 f = friction factor, dimensionless
 L = duct length, m [ft]
 D = duct diameter, m [in]
 ΣC = sum of local loss coefficients, dimensionless

 13

 V = average air velocity, m/s [fpm]
 ρ = air density, kg/m3 [lb/ft3]
 gc = dimensional constant,(kg-m)/(N-s2) [32.0(lbm-ft)/(lbf-s2)]

Rectangular:
cf g

V
C

D
fL

P
2

2ρ










+=∆ ∑ (2.1b)

 where:
 Df = equivalent-by-friction diameter of rectangular duct, m [in]

Where the equivalent-by-friction diameter (hydraulic diameter) is

WH
WH

D f +
×= 2 (2.2)

where:
 H = duct height, m [ft]
 W = duct width, m [ft]

By using the continuity equation

 AGV /=

where:
 G = air flow, m3/s

And the aspect ratio for rectangular ducts (r = H/W), the following equations result:

For round ducts:

 DGV 24 −=
π

 (2.3a)

For rectangular ducts:

WH

G
V

×
= (2.3b)

or WG
r

V 21 −= (2.3c)

Duct width can be interpreted in terms of an equivalent-by-velocity diameter by equating Equations 2.3a
and 2.3c since Equation 2.3b can be rewritten as Equation 2.4 for round duct

 14

 vD
r

W
5.0

5.0 




= π

 (2.4)

Equations 2.3a and 2.3b yield the equivalent-by-velocity diameter for rectangular ducts (Dv)

 HWDv 128.1= (2.5)

 Air density ñ is a function of air temperature and pressure

()

()T
PP Ws

++
−=

15.2731.287

378.0
1000ρ (2.6)

where:
 Ps = static pressure in duct section, kPa [in.WG]
 Pw = partial pressure of water vapor in moist air , kPa [in. WG]
 T = air temperature, °C [°F]

Introducing the coefficient ì

Round duct: DCfL ∑+=µ (2.7)

Rectangular ducts: v

f

DC
D
fL











+= ∑µ (2.8)

Then substitute ì into the Darcy-Weisbach equation (2.1a and 2.1b) using Equation 2.3a to obtain the
single duct pressure loss

For round duct:
521

811.0 −−=∆ DGgP c ρµ (2.9a)

For rectangular duct:
521

811.0
−−=∆ vc DGgP ρµ (2.9b)

To express the diameter in terms of a pressure loss by using coefficient ì yields, where D is equivalent to
Dv

 () () 2.04.02.0
959.0

−∆= PgGD cρµ (2.10)

Friction coefficient in variable ì is calculated by using Colebrook's equation (1938-39).












+=

fDf h Re

51.2

7.3

12
log2

1 ε
 (2.11)

where:

 15

 å duct absolute roughness, m [ft]
 Re = Reynolds number, dimensionless

 ν
VDh=Re (2.12)

where
 ν = kinematics viscosity, m2/s [ft2/s]

Colebrook's formula cannot be solved explicitly, therefore it was simplified by Altshul-Tsal (ASHRAE
1997) as

25.0

Re
6812

11.0 





+=′

hD
f

ε

 if f' ≥ 0.018 then f = f' (2.13)
 if f' < 0.018 then f = 0.85 f' + 0.0028

Friction coefficient obtained by Altshul-Tsal's equation is within 1.6% of those obtained by Colebrook.

Friction coefficient for fully developed laminar flow (Re<2300) is calculated by the following formula:

 f = 64 / Re (2.14)

Research shows that leakage in an assembled duct (ÄG) can be estimated by an exponential equation.
According to ASHRAE (1997) the exponent is 0.65 for turbulent flow

n

sL PCaG 1=∆ (2.15)

where:
 a1 = coefficient, 0.14 x 10-5 (1.00)

The constant CL, called leakage class, in this equation reflects the quality of duct construction and sealing
method. It is based on experimental data and exists in the range from zero for welded ducts to 110 for
rectangular unsealed ducts. The average leakage class CL for rectangular unsealed ducts is 48 (ASHRAE
1997). For laminar type leakage the flow coefficient n is 1. The n coefficient for turbulent flow leakage is
in the range between 0.5 and 1.

65.0

1 sL PCaG =∆ (2.15a)

For typical duct internal static pressure is constantly changing from the static pressure at the fan to the
terminal inlets/outlets due to friction, dynamic losses (fittings), and leakage. Prior to the pressure loss
calculation it is unknown what the static pressure is at each duct section. Considering that duct leakage is
a function of static pressure in a duct which depends on the location of fittings, Tsal/Behls/Varvak (Tsal
at.el. 1998) have suggested, instead of using the sum of C-coefficient in the Darcy-Weisbach equation, to
identify sections as a duct between any two fittings.

 16

 2.2.2 Fittings

Fitting resistance is calculated as a part of Darcy-Weisbach equation and can be represented by the sum
of local resistance C-coefficients in a duct section unless sections are divided between fittings to obtain a
high-level accuracy which is necessary for duct leakage calculation. There are a large number of tables
and formulas that are used to calculate C-coefficient for fittings. The most valuable source of C-
coefficient is contained in a Handbook of Hydraulic Resistance (Idelchik 1996) and the ASHRAE Duct
Fitting Database (DFDB 1994).

Depending on the type of calculation, fittings can be divided into two parts: fixed and variable . Fixed
fitting is the one for which its C-coefficient does not depend on unknown variables, therefore it can be
calculated once at the beginning of the calculation process and does not need to be recalculated during
iterations. For example, the round smooth elbow is a fixed fitting because its resistance depends only on
the angle and the ratio of curved radius to the duct diameter. However, the round mittered elbow is a
variable fitting because its C-coefficient depends on Reynolds number which includes air flow velocity; but
this velocity is a function from air flow which is an unknown variable. Local resistance coefficients for
variable fittings have to be calculated in every iteration due to the change of air flow.

There is a well-known phenomenon when C-coefficient becomes negative. Such negative C-coefficient
mostly take place in junctions, converging and diverging, and interpreted as a pressure gain due to the
transformation of energy instead of pressure loss. There is no "free energy" since the additional pressure
always came from the another joint stream.

 2.2.3 Infiltration and exfiltration

Infiltration or exfiltration to/from a room depends on pressure difference between this room and
surrounding space. Air may leak through cracks and chaps in walls, ceilings, around closed doors, and
electrical conduits. ASHRAE 1997 Handbook (Chapter 25, Equation 34) presents the following formula
for leakage calculation

nPcQ)(∆= (2.16)

where:
 c = flow coefficient, (m3/s-Pan) [cfm/in.WGn]
 n = flow exponent between 0.6 and 0.7 (assumed 0.65), dimensionless

ASHRAE Handbook presents the coefficients c and n for variety of building components. The results of
experimental study of these coefficients were published by Ahmed et.al. (1998).

 2.2.4 Fans

The ventilation system in research laboratories can be served by a large number of fans, supply and
exhaust. Computer program proposed under this project will be capable of modeling a system with many
fans. Fan characteristic is the function between fan total pressure (Pf) and discharge flow (Qf) for each
rotation speed (Nf). This characteristic can be approximated either (1) by piecewise-linear way or (2) by

 17

a number of polynomials

 Rotation N1 Qf = a11 + a12 Pf + a13 Pf

2 + a14 Pf
3

 Rotation N2 Qf = a21 + a22 Pf + a23 Pf
2 + a24 Pf

3

 Rotation Nn Qf = an1 + an2 Pf + an3 Pf

2 + an4 Pf
3

or a more complicated function (Stoecker 1975)

22

9
2

8

2

76
2

54

2

321 NPcNPcNPcNPcNcNcPcPccQ fffffff ++++++++= (2.17)

This function can be simplified by using the "Fan Laws" (ASHRAE 1996)

2

1
21 N

N
QQ ff = (2.18a)

2

2

1
21 





=

N
N

PP ff (2.18b)

Using these equations referenced only to one basic fan curve, the other curves for different rotation can
be easily calculated.

Large number of fans manufactured and the absence of a common fan database always creates a
problem for the program user who is trying to represent a fan curve by a formula. The easiest way is to
input a number of representative points and approximate fan curve by lines joining these points. This can
be done in a number of ways depending on selected control:

 (1) Control by a damper. Input a few flows, pressures, and break horse powers

(recommended not more than 8 points) and approximate the distance between them with
straight lines.

 (2) Control by fan rotation. Input the base fan curve in the same way as above and calculate

other fan curves using "Fan Laws"

 (3) Control by pitch (not practical for studied application).

 (4) Controlled by inlet vane. The fan curve is a function of the vane angle presented as a per

cent from fully open vanes. In general, this function is different for each fan as well as
for the manufacturer; however, at the time of computer program development the study
should be made how this function should be either generalized or presented in a database.
 The most undesirable option is contacting fan manufacturers to get the necessary data.

 18

A very important element in calculating available discharge fan pressure is system effect factor (AMCA
1973). However, the ASHRAE is interpreting this effect as a fitting with variable C-coefficient.

 2.2.5 Fume hoods

Hydraulic resistance of a fume hood (FH) depends on its types and construction. The most important
three parameters:
constant or variable volume air flow,

(1) constant or variable face velocity,
(2) existence of a secondary auxiliary supply.

Auxiliary supply can be interpreted as an individual supply system that effects the room pressure
(see "Problem Formalization" below). Also, a fume hood may have an individual exhaust fan and
a HEPA filter. Hydraulic resistance for variable volume fume hood depends on the position of the
sash and the entry air velocity.

 2.2.6 Air flow systems

Relationship between air flow (Gi), pressure losses (ÄPi) and resistances (si) for systems with cycles is
similar to the first and the second Kirchoff laws.

For any node j
 ∑ ===

j
i qjpiG ,...,1,,...,1,0 (2.19a)

For any c-cycle
 ∑ ===∆

c
i kcpiP ,...,1,,...,1,0 (2.19b)

For any c-branch in a tree

 ∑ ===∆

c
fani kcpiPP ,...,1,,...,1 (2.19c)

The last two systems of equations are nonlinear (quadratic) and describes the relationship between
pressures and flows for each section i (similar to Ohm's law):

2

iii GsP =∆ (2.20)

As a result, the system can be presented as a graph that includes p sections, q nodes and k cycles or
branches. On this basis, a system of p equations with p unknowns can be developed. This system includes
two parts. The first part is linear and is based on system of equations 2.18 for q-1 nodes. The second part
describes equations 2.19 and 2.20 for k independent cycles. The number of these cycles is K=p-q+1.
However, in order to develop a system of equations, one needs to know the direction of flow at each

 19

section.

In a number of technical systems direction of flow is known. Moreover, the directions of flow can be
determined by the topology of the system. In many air flow systems with central supply and central
exhaust fans the direction of air flow is easy to determine. But some systems create a vicious circle,
where directions of flows are defined by solving the system of equations, while the development of this
system depends on the directions of flows.

There is no such problem for electrical systems, because of the sign rule. According to this rule, one can
arbitrarily assign directions of currents, and then develop a system of equations based on these directions.
The solution will show negative flows in some sections, which means that directions of currents in these
sections need to be changed. But absolute values of currents stay unchanged. However, nonlinear
aerodynamic systems do not allow determining correct directions of flows from signs of resulting flows.
To make things worse, in some fittings the resistance (si) can be a function of flow.

At the same time, change of direction in one section causes changes of flows in all others. The general
system of equations for flow distribution in quadratic aerodynamic systems with known flow directions can
be represented in a matrix form vector p-dimensional space:

 A G = 0 (2.21)

 B S G x = B P (2.22)

where:
 x = vector of flows, one-column matrix.

A = matrix of node coefficients. Coefficient ai at intersections of its rows (nodes) and
 columns (sections) are equal to +1 if the flow is directed towards the node, and -1 if
the flow is directed away from the node. Zeros are put in places where the node and
the section do not intersect.

B = matrix of coincidences of sections (columns) and cycles (rows). If the direction of flow
 coincides with the arbitrarily assigned direction of flow for the cycle, +1 is placed at
the section/cycle element. In the opposite case, -1 is placed.

S = square diagonal p-dimensional matrix, where the flow vector components are located
 along the diagonal.

 P = vector of pressures, one-column matrix.

Solution of systems (4) and (5) is possible through use of numerical methods and computers. But that
requires knowing directions of flows in all sections, and that means that the matrix A is quite determined.
Any linear transformation of this matrix that is connected with sign change in its columns is inadmissible.

2.3 Main requirements

Following are the main requirements for air distribution systems:

(1) Safety. The major safety requirement for a laboratory that contains contaminated materials is to
establish room pressurization that prevents contaminants from moving into a less contaminated room

 20

(negative pressurization). For example, there is a number of consecutive pressure zones in nuclear
laboratories where negative pressure differences between zones prevent less contaminated zones from
being contaminated by more contaminated zones. The pressurization effect depends on many system
elements such as fans, dampers, infiltration/exfiltration, pressure control, etc. If a room has a pressure
different from that of surrounding space, it creates infiltration or exfiltration that balances the difference
between supply and exhaust air flow.

For a hermetically sealed room the volumes of supply and exhaust air are equal. In spite of this, the room
can be under positive or negative pressure depending on the position of a "zero" pressure point in the duct
system. In reality, no room can be sealed hermetically. Therefore it has infiltration or exfiltration
depending on the "zero" point location.

Flow cascading is one of the main techniques used in room pressurization. There is an important limitation
in this project that is the study of steady-state regime when all doorways are either closed or have
airlocks.

The main safety requirement is to develop and control an air flow distribution system capable of
maintaining effective laboratory pressurization to prevent contamination.

(2) Process. There are a number of requirements for laboratory equipment to maintain certain air
velocity or air flow that effects the technological process. For example, there is a minimum-maximum
velocity limit for air flow through a sash. Other example is the minimum velocity at stack exhaust. Also,
necessity to maintain positive pressure in a clean room belongs to the process requirements. There is no
strong boundary between safety and process requirements.

(3) Comfort. It is necessary to maintain the comfort conditions in the laboratories including the minimum
percent of ventilation air volume, temperature, humidity, and air cleanness, as well as not exceeding the
maximum noise level.

The following list is the summary of the most common requirements for air flow distribution system in
laboratories. It is required for each room to maintain:
 -- Pressure zone in the minimum-maximum range,
 -- Ventilation air volume above the minimum,
 -- Face air velocity in FH and BSC sashes,
 -- Air velocity at the stack discharge,
 -- Temperature, relative humidity, and air velocity in the working zone

2.4 Types of calculations

There are two major types of calculation: optimization and simulation. Optimization takes place during
system design while the simulation is applicable for retrofitting and modeling when engineering systems are
analyzed for performance.

Optimization selects duct sizes and fan pressure by minimizing the system life cycle cost. Unfortunately,
in reality optimization is substituted by sizing based on engineering judgement.

 21

There are three types of boundary conditions associated with air system design:

(1) Boundary conditions are presented by pressures at terminals, Pi, and by fan pressure, Pfan.

Depending on system pressures for terminal sections or fan curve may be given. This type of
boundary conditions can be called the boundary conditions of the first rank.

(2) If flows are known, boundary conditions are considered to be of the second rank.

(3) If boundary conditions are presented as a mix of flows and pressures they are considered to be of

the third rank.

It can be proven that in such cases boundary conditions may be presented too generally and a problem
could be incorrectly determined. For example, for systems with the third rank of boundary conditions one
can get a single solution, an infinite number of solutions, or no solution at all. Therefore additional data
(conditions of optimization) are necessary in order to formulate the problem correctly.

Getting a solution of a simulation problem means determining flows, pressures, and velocities for a
system with known sizes, already selected fans, established fan rotation and angles of dampers. Boundary
conditions for simulation problems can require only a limited number of parameters, flows or pressures at
system nodes.

The problem under this project is that of system simulation and assumes that all equipment, fans, duct
sizes, and control devices have already been selected at design phase or represent an existing system.

There are strong requirements as to the number and location of control devices. A simple rule "the
number of control devices has to be the same as the number of controlled parameters" works many times.
 It can be shown on a simple example, where a system consists of a single duct section with a fan and two
dampers controlling pressure in the room. This system is overdefined and cannot work sufficiently since
there is an infinite number of dampers' angles for each pressure resistance in the duct.

There are many types of air distribution systems which depends on their application and purpose: constant
volume (CV), variable air volume (VAV), individual, centralized, manifolded, branched, cycled, or
combined with fans connected in parallel or in series. Also, there is a variety of system elements: fans,
ducts, fittings, plenums, dampers, filters, heating and cooling coils, fume hoods and biological safety
cabinets, infiltration/ exfiltration resistances, more. Also, the rooms/spaces by themselves are system
nodes in topological sense. Many system elements can be applicable for use under different conditions,
for example, two types of fume hoods: (1) constant velocity and constant volume, and (2) constant velocity
and variable volume.

2.5 Limitations

The following limitations to the problem solution will be encountered:

(1) Simulated network is limited to laboratory rooms that are served by the same central
supply system. Only a single supply system with many exhaust/return systems are
allowed,

 (2) No economizer solution

 22

 (3) Only identical fans can be connected in parallel
 (4) No dual-duct systems
 (5) Only steady-state conditions are simulated
 (6) Only systems that can be reduced to a flat graph are encountered
 (7) All doorways are considered closed
 (8) No wind effect
 (9) Ambient air pressure in the surrounding rooms that are not served by the common supply

system is assumed atmospheric
 (10) No thermal forces like stack effects

2.6 Problem formulation

In general the goal of this project is to develop a practical technique that will be used as a tool for studying
air flow and pressure in laboratories under different conditions. Proposed tool is a computer program,
named BELLAIR, capable of identifying the situations when pressure confinements, process
requirements, and/or comfort conditions are violated. This program will identify the cause of violating the
requirements described above in part 2.3 "Main Requirements" and be used for studying preventive
measures.

Following are the problem formulation for the proposed computer simulation code that includes four nested
steps:

(1) Air flow modeling. Calculate air flows, pressures, velocities, and air leakage for each
section of air distribution system under the following conditions:

 -- Known topology, equipment, and sizes,
 -- Known RPM (or inlet vanes opening per cent) for each fan,
 -- Known angle for each damper,
 -- Known open face area for each sash.

(2) Control system modeling. Identify the position of all control devices as a function of
the set points including rotation for all fans, percentage of opening for inlet vanes, and
angle of dampers. The positions of control devices have to be obtained for given open
face area of fume hoods and biological safety cabinets. The goal of the control system
modeling is to identify the position of actuators that satisfy following requirements:

 -- Required pressure zoning,
 -- Minimum ventilation rate,
 -- Temperature/humidity range,
 -- Air velocity range where it is required by process.

(3) Statistical modeling. Conduct a statistical selection of the position of each sash that
depends on its working schedule. The position of the sash will be assigned randomly
according to the selected time of the day and the schedule presented in input data. The
idea of statistical modeling was presented by Dale Sartor (Lawrence Berkeley National
Laboratory, San Francisco).

 23

(3) Usage (diversity) factor calculation. It is known that all FH/BSC in many laboratories are
not used simultaneously. A system usage (diversity) factor is the maximum number of
exhaust devices in operation the same time (ASHRAE 1995). The computer program should
create a usage (diversity) factor based on the results of the statistical analyses.

3. Mathematical and engineering methods for network simulation

3.1 Branched systems

There are a few numerical methods and computer programs for calculating flow distribution in a branched
duct system. The oldest flow simulation method, called equivalent nozzles, was developed in Germany
at the end of the 19th century by Bless (Lobaev 1959, p.79). The intent of this method is to substitute the
resistance of ductwork by the equivalent resistance of a nozzle. The cross-section of the nozzle is then
calculated in such a way those for the same flow the pressure losses in the system and at the nozzle are
the same. Then, by computing the flow at this nozzle from the known pressure difference, the flow
through each section can be calculated. The main shortcoming of this method is the need to iterate the
diameters of parallel sections. The method is oriented to the quadratic law of resistance, which is seldom
used for HVAC duct design.

The unit flow method was developed by Kamenev (1938). This method is used to calculate flow
distribution in an existing system and assumes flow through the terminal section is equal to one unit of
flow. Then the pressure loss per one flow unit is calculated for sections connected in parallel and in
series. Flow is proportional to the number of units for each section. This method, as well as the
equivalent nozzle method, is used in cases of quadratic law friction, which applies only when the duct
velocity is greater than 70 m/s (13,700 fpm). This velocity is impractical for HVAC ducts.

The duct characteristic method was developed by Butakov (1949). Butakov used the old friction
coefficient formula developed by Bless and substituted it into the Darcy-Weisbach equation. Then he
substituted lengths, C-coefficients, and diameters for coefficients called duct characteristics and derived
formulas for calculating these coefficients for sections connected in parallel and series. An important
shortcoming of this method is that the use of Bless's formula results in a 20% difference between pressure
loss by Colebrook (1938-1939) or Altshul (1975). This method also can be used only for ducts operating in
the quadratic law friction range.

The equivalent resistance method was developed by Lobaev (1959) and can be used for duct sizing and
system simulation. This method is almost the same as the duct characteristic method. Instead of using
Bless's formula for calculating friction coefficients, Lobaev applied his simplified formula for metal ducts
to obtain a function of hydraulics similarity that depends on friction coefficient, length, diameter, and C-
coefficient.

The steepest descent method was applied for duct simulation by Tsal and Shor (1967) and implemented
as a computer program. The objective function is the sum of square differences between fan pressure
and pressure losses in branches, and the flows are the unknown variables of a system of nonlinear
equations. The gradient is defined as a result of calcula ting a matrix of partial derivatives. The descent
step is normalized at each iteration as a function of maximum gradient-vector. If the gradient is positive, it

 24

is divided by two. The authors reported the development of a computer program for calculating the flow
distribution in branches, correcting the fan operating point in the case of a change of flow, and calculating
the required brake horsepower. Major applications are industrial exhaust systems conveying dust where
dampers are prohibited. Tsal and Chechik (1968) developed the algorithm for flow distribution, based on
the Bellman’s dynamic programming method. The authors noted that this method is more difficult for
implementation than the steepest descent method, but it has no convergence problems. The duct system
is divided into a number of stages. Different pressure levels are assigned for each stage, and the method
is based on a variation of flows at each pressure level. Only flows that correspond to the same pressure
losses at branches are stored. Fan pressure is analyzed when the dynamic calculation process reaches the
root section. The use of the dynamic programming method may be limited by available computer memory.
 It should be noted that Tsal's and Chechik's book was published in 1968 when computers had limited
memory.

The T-Method, based on Bellman's Dynamic Programming ideas, has been developed by the author in
cooperation with ASHRAE as a design tool for a single -root duct system simulation (Tsal, Behls, Mangel,
1990). T-Method (ASHRAE, 1997) is based on the same tee-staging idea as Dynamic Programming
(Bellman 1957; Tsal and Shor 1967; Tsal and Chechik 1968). T-Method incorporates the following major
procedures: (1) System condensing. Condenses the branched tree system into a single imaginary duct
section with identical hydraulic characteristics and the same owning cost as the entire system (2) Selection
of an operating point. Determines system flow and pressure by locating intersection of fan and system
curves, (3) System expansion. Expands the condensed imaginary duct section into the original system with
flow distribution. The T-method duct simulation determines the flow within each section of a duct system
for known duct sizes and fan characteristics. The shortcoming of the T-Method is that it calculates tree-
networks only.

A computer program called T-Duct based on T-Method was developed by R.J.Tsal (T-Duct 1994) in 1993
and successfully used for simulating duct systems with a tree-graph topology and a single fan located at
the root. However, the T-Method is not capable of simulating the laboratory multi-fan systems if it is
represented.

The Steepest Descent method is effectively used for modeling duct systems (Tsal and Shor 1967).
Fan curve shows the relation between fan flow and fan total pressure:

 Pfan = f (Gfan)
The task is to find flow distribution in all system branches for known fan curve and known duct sizes.

Let us number sections and nodes of a system in the following manner:

 {ák (r)}, k=1, ..., tr are numbers of sections related to the node r,

 ÄPá is pressure loss at section á,

 Gá is flow at section á.

The following equations take place:

 25

1) mrGG r

t

k
rk

r

,...,1,)(
2

)(1
==∑

=
αα (3.1)

where:
 α1(r) = section number linked to the node r,
 m = number of nodes in the system,
 tr = number of sections linked to the node r.

2) ∑
∈

==∆−
iM

fanfan piPGP
α

α ,...,1,0)((3.2)

where:
 Mi = set of á indices, corresponding to sections included in branch i,
 p = number of branches in the system.

Notice that ÄP is the total pressure loss, including both friction and fitting losses. When the diameters are
known, ÄPá depends only on Gák (r).

On the other hand,

 ∑

∈
=

α

α
R

iGG
1

 (3.3)

where:

Rá = set of branch indices that are the children of section á. If Gi (i = 1,..., p) are undefined
variables, and Gá is determined according to the Formula 3.3, then the Equation 3.1 will be
satisfied.

Pressure loss ÄPá can be looked at as a function of Gi. Therefore, the task of flow distribution is to find a
vector {Gj}, which satisfies the following system of equations:

 { }() pjiGPGP
iM

j

p

j
jfan ,...,1,,0

1

==∆−







∑∑
∈= α

α (3.4)

Let us view our problem as a minimization of the function:

 ∑
=

=
p

i
iRF

1

2

Where the residuals in Equation (3.4) are:

 { }()∑∑
∈=

∆−





=

iM
j

p

j
jfan GPGPR

α
α

1
 (3.5)

The vector-gradient is calculated using the following formula:

 26

 pj
G
R

R
G
F

j

i
i

j

,...,1,2 =












∂
∂=













∂
∂

∑ (3.6)

The derivatives












∂
∂

j

i

G
R

are hard to get in explicit form. Therefore, they are substituted by

finite differences:

() ()

δ
δ pjipji

j

i
GGGRGGGR

G
F ,...,,...,,...,,..., 11 −+

≈












∂
∂

 (3.7)

Let us look at the algorithm of the gradient descent in more detail and set the initial air flow:

)0()0(

1 ,..., pGG

Fan curve is a part of input data. It can be approximated as a flow-pressure at a number of selected
points. A partial case is considered when fan pressure Pfan is predetermined. Fan pressure is calculated as
a function of fan curve and airflow using linear interpolation. The criterion of convergence is the following
condition:

 pjires
P

GPPsign

fan

jfan
,...,1,,max

}))({(
=<

∆− ∑ α

where:
 maxres = maximum residuals

Then derivatives are calculated as

() ()

δ
δ pjipji

p

j
j

j

i
GGGRGGGR

R
G
F ,...,,...,,...,,...,

2 11

1

−+
≈













∂
∂

∑
=

 (3.8)

The descent step is determined by the maximum component of the gradient. The first step is

 h = 0.25 max Gi

Then ë (the coefficient of descent) is













∂
∂=

jG
F

h max/λ (3.9)

And the corrected air flows at k+1 (the next step) are:

 27

 pi
G
F

GG
j

k
i

k
i ,...,1,)()1(=













∂
∂−=+ λ (3.10)

At the beginning steps are large and descent is fast, but in time steps must be made smaller so that
accuracy will not be lost. Therefore whenever the absolute value

 










∂
∂

jG
F

max

rises, the step is divided in two.

Convergence of this method to a global minimum is guaranteed only for a concave function F. It is
difficult to prove that the F function is concave due to the complicated function ÄPá . However, numerous
calculations show that convergence is very good.

On the basis of the method of steepest descent R.J.Tsal created and successfully used for many years a
computer program, which simulates ventilation systems (Tsal and Shor 1967). This program not only
allows one to solve the problem of airflow distribution, but also corrects fan pressure in accordance with
the characteristic of the fan when the flow changes and determines the power necessary.

Tsal (1998) has recently presented t-Method with Duct Leakage. The purpose of T-method simulation is
to determine the flow within each section of a branched duct system of known duct sizes and fan
characteristics. Incorporating duct leakage means that downstream airflow at each section is different
from upstream due to air leakage through the duct walls. T-method with duct leakage incorporates the
following major procedures:

System condensing . Condense the branched tree system into a single imaginary duct
section with identical hydraulic characteristics. Duct leakage is simulated as an additional duct section
and connected in parallel to each duct section in a duct system.

Selection of an operating point. Determine the system flow and pressure by locating the intersection of
the system characteristic and the fan performance curve.

System expansion. Expand the condensed imaginary duct section into the original system with flow
distribution.

Leakage at the i-section is simulated as an additional xi-section that is connected in parallel to section i at
the node. Pressure loss for the xi-section is the same as for section i and air flow for both sections is
G=Gi+Gxi. This is the main idea of incorporating duct leakage into the T-Method. Therefore the same
formulas that are used by the T-Method without duct leakage are used for the T-Method with leakage
incorporated. The difference is four parallel sections at each node instead of two. Condensing duct
sections connected in series yields Equation 3.11 (Tsal et al. 1990, Equation 12).

 28

 () 5.02
2

2
121

−−−
− += KKK (3.11)

where:
 K = hydraulic characteristic of a duct section

Condensing duct sections connected in parallel yields

212121 xx KKKKK +++=− (3.12)

where:
 Kx = hydraulic characteristic of leakage section connected to the main section in parallel

Condensing a tee yields Equation 3.13

5.02

3
2

2131])[(
21

−−−
− ++++= KKKKKK xx (3.13)

The selection and expansion procedures for T-Method duct simulation with leakage incorporated are the
same as without leakage (Tsal et al. 1990).

3.2 Cycle systems

3.2.1 Methods for solving systems of nonlinear equations

The first method for water distribution in cycle systems was developed by Andriyashev and published in
1932 (Andriyashev 1932). In two years Lobachev (1934) published different technique. Hardy Cross
from the Illinois University published his method in 1936 (Cross 1936).

For cycle network systems Martin and Peters (1963) first used the Newton-Raphson method for water
supply systems. Stoecker et al. (1974) for simulating central chilled-water systems and Gregory et al.
(1975) for duct systems and was later implemented into a computer code called TVENT1P. The main
purpose of this program is dynamic modeling of a duct system for tornado conditions using electrical
analogy for a loop system. TVENT1P uses only fixed resistance coefficients; therefore, after every
iteration, the program must be interrupted. Then, C-coefficients based on output flows must be
recalculated and used as input data for the next iteration. New C-coefficients have to be calculated
manually for all junctions, transitions, and elbows when the C-coefficient is a function of flow, velocity, or
Reynolds number. Walton (1984) successfully used the Newton method for natural airflow modeling in
buildings and managed to increase the converging speed (AIRNET computer program). According to
Walton (1984) a great contribution to the method used in AIRNET was provided by James Axley (1988).

The use of the Newton method was studied by Lam and Wolla (1972). They analyzed the benefits and
shortcomings of the Newton method as: (1) difficulties in getting the initial guess by establishing flow
directions, (2) computational difficulties in determining the Jacobian derivatives, and (3) high n3 cost of
solving the equations.

The following three methods are most suitable for solving our problem: Affine invariant Newton method,
Tensor method, and Homotopy method. However, the Homotopy method should be considered as the

 29

method of choice. Discussion about why we came to this conclusion will be presented after detailed
analysis of each method. Very significant for the effective code programming is the method for
approximating the Jacobian. This discussion will include different techniques for Jacobian calculations.
Finally, numerical comparison between different techniques for solving linear equations will be furnished.
In last five years numerical solution of linear equations gained a number of new powerful techniques.
Now it is possible to reduce the computation time using such new techniques.

Numerical method for nonlinear algebraic equations has a long history. The state-of-art description
presented in the excellent books by Rabinowitz (1970), Ortega (1970), Ostrowski (1966), Dennis (1983),
and Shnabel (1984). A review of this subject is presented in the excellent book of Nocedal and Wrigth.
(1998).

Definition of this problem: a system of nonlinear equations is mapping function F from R
n

to R
n

, for

which a solution of x is required under conditions F(x)=0. The techniques of solving this system of
equations can be interpreted using optimization techniques. In both optimization and solution for nonlinear
equations Newton’s method lies at the heart of many interesting algorithms. Features such as line search,
trust regions, and inexact solution of the linear algebra subproblems at each iteration are very important in
nonlinear equations. The most common methods for such analysis are: Newton’s, Broyden’s , Tensor,
and Homotopy.

3.2.2 Newton’s method

Let us define a linear model function M k by taking the first two terms of the Teylor’s series for Fxk

)()()()(pFpJFpM xxx kkkk +≈+= (3.14)

It is assumed in Newton’s method that)(xJ k is nonsingular and defines as

() pFxJp kkkkkk xxx +=−= +
−

1
1),()((3.15)

If we assume that current iteration xk is close to x*
 and)(xkJ is nonsingular convergence of Newton’s

method is proven (symbol * means good approximation). When Lipschitz continuity assumption is
satisfied, we can prove that stronger convergence results indicate quadratic convergence. In the ideal

circumstances (closeness of xk to the solution, availability of J, exacts calculation of pk
), the basic

Newton’s method converges well. However these circumstances usually arrives only at the end of the
solution, if ever.

Shortcomings of Newton’s method include:

(1) When the starting point is remote from a solution, the basic Newton method can behave
erratically. There is no guarantee that it will eventually approach a solution.

(2) The Jacobian J is required. In many circumstances it is difficult or impossible for the user to
supply computer code to calculate this matrix.

 30

(3) The Newton step pk
is usually defined by solving the linear system)()(xFpxJ

kkk
−= . It

may be too difficult to define an exact solution to this system when n is a large number. It may

even be too difficult to store the coefficient matrix)(xJ k
.

(4) The Jacobian may be singular at the root x
k

Newton’s method can be modified and enhanced in various ways to gets around of the most of these
problems.

Newton-Raphson method generally assures fast convergence. However, Newton-Raphson method may
fail. Good explanation of this phenomenon was presented by the M.J.D.Powel (Rabinowitz, 1970).

He shows that the damped Newton-Raphson method in the form of

δλ
kkkk

xx +=+1
 (3.16)

Where
kλ is calculated to prevent the estimate x k)1(+

 from being worse than the estimate x k)(
. Let use

the sum of squares of residuals

[]∑=
=

n

i
xf ixF

1

2
)()((3.17)

Let us calculate λ)(k
 to achieve the improvement

)()(
)()1(

xFxF kk <+
 (3.18)

It is possible to obtain this inequality because if J k)(
 is non-singular, algebra presents the result in the

following expression

0)(2)(
)()()(<−=



 +
∂
∂

xFxF kkk

δλ
λ

 (3.19)

unless x
k)(

 is already a solution of the equations. According to Powel (Rabinowitz, 1970), one recurring

deficiency of this algorithm is that the successive estimates ,...,...,,)()1()(xxx mkk + may converge to a
point where equations are not satisfied. Also there is an obvious change to the variables that will decrease
all the residuals)(xf i because the point of convergence is not the stationary point. Modification to the

classical Newton-Raphson iteration, which overcomes the deficiency, is an algorithm where Equation 3.16
is replaced by the iteration

η
)()()1(kkk

xx +=+
 (3.20)

 31

Where η)(k
 is the solution for the following system of linear equations

∑∑ ∑
== =

=−=






 +

n

t

k

t

k

ti

k

j

n

j

n

t

k

tj

k

tiij

k
nixfJJJI

1

)()()(

1 1

)(
,...,2,1),(ηµ (3.21)

The matrix I is the unit matrix and µ)(k
 is the non-negative parameter. These values are calculated to

provide the inequality)()()()1(xx kk FF <+ . Note that 0)(=µ k
 is the classical iteration, and, if µ)(k

becomes large, the solution of the linear equations tends to be the value

∑ 







= ∂

∂

=

−=−≈
n

t

k

i k

kk

t

k

ti

k

i
xF

x xx

xfJ
1

)(

)(

)()()()(
/)(

2
1

/)(µµη

(3.22)

showing that η)(k
 tends to a small negative multiple of the gradient of F(x) at xx k= . Therefore large

values of µ)(k
 tend to make the iteration (3.20) similar to the classical steepest descent method applied to

the function F(x). Unless x k)(
 is a stationary point of F(x), value of µ)(k

 can be calculated from the

required Inequality 3.18. As a result, a famous hybrid algorithm (as example, MINPACK) for nonlinear
equations very similar to the Levenberg/Marquardt method has been created. The most important benefit
of this approach is that it does not require explicit expressions for the derivatives, instead it uses the

successive values of ,...)2,1;,...,2,1)(()(== knif x k
i to build up a numerical approximation to the

Jacobian matrix by the technique presented in the Broyden method (see below). Revising the Jacobian

approximation by this method requires only n
2

 computer operations for each iteration. However if full

Newton-Raphson correction is too large, the displacement from x
k)(

 is based toward the steepest descent

direction of F(x). This is the important feature of the Levenberg/Marquardt iteration. It is possible to find

that under very mild conditions the F(x) becomes very small because x k)(
 is close to a stationary point of

F(x). The famous MINPACK1 is based on hybrid algorithm. Rabinowitz (1970) presented a detailed
description of the solutions.

The following are the main Powell’s results.

To begin k-th iteration requires step-length ∆
k

and two numbers: E and M and solving results of xk . The

step-length can be changed at each iteration, and its purpose is to restrict the length of the displacement
()xx kk −+1 in a way that the iteration decreases the value of F(x). By decreasing F(x) substantially the

value of ∆
k

 is kept large. Fixed positive values are assigned to the numbers E and M before the

iterations start. These multipliers govern the conditions for finishing the iterative process. It stops if F(x)
is reduced to less than E, or alternatively if the gradient of F(x) is so small that the distance from x to a

 32

solution is predicted to exceed M. Therefore E is set to a small enough value, in order the condition

[] Exf
n

i
i

<∑
=1

2

)(

 (3.23)

implies that x is close to a solution of nonlinear equations. Matrix M is usually set to an over-estimate of

the distance from xk
to the solution, in order that other stopping condition is obtained only when x is close

to a stationary point of F(x). The k-th iteration calculates the elements of Jacobian matrix at xk
. Then it

evaluates both the full Newton-Raphson correction δ k
and also the gradient g k

of F(x) at xk
. Finally, it

tries to test the following inequality

() gMF kkx
2

≥

 (3.24)

If this inequality is satisfied the iterations are completed since it is likelihood that the sequence of estimates

xk
is converging not to a solution of the equations, but to a local minimum of F(x).

Theorem 1. If the elements of the Jacobian matrices J
k

ij

)(
 are bounded and)(

)(

xF k
 is finite, than

either the iterative process is completed, because one of the conditions (3.23) or (3.24) are

satisfied, or the successive estimates ,...,)2()1(xx converged to a point x(*)
.

Theorem 2. If the function)(xf i

 has continuous bounded first derivatives, and Powel’s

algorithm is applied to solve the system of nonlinear equation F(x)=0, the algorithm converges
after a finite number of iterations, due to either one of the conditions (3.23) or (3.24) being
satisfied.

Although Theorem 2 is satisfied when exact expressions for the elements of the Jacobian matrix are
available, a generalization is possible when the elements of the Jacobian matrix are approximated
numerically.

Theorems 1 and 2 indicate that hybrid algorithm may fail only because the functions ,,...,2,1),(nixf i
=

do not have bounded continuous first derivatives, or because of computer rounding errors. However, this
process may terminate if the length of the predicted gradient of F(x) is less than F(x)/M, and this fact will
not be acceptable to some practical cases. Because the algorithm makes frequent use of the Euclidean
lengths of vectors, it is important to choose the scale of the components of x so their magnitudes are
similar. This is a real deficiency, so it would be useful to include some automatic scaling. However the
problem is a difficult one, because, if the equations are linear, the natural change of variables causes the
surfaces F(x)=0 constant to be spherical, in which case the Newton-Raphson correction of Equation 3.20
is along the steepest descent vector of F(x). There is a danger that too much automatic scaling would

 33

cause the hybrid method to degenerate into iteration. The radical solution of this problem is the use of
affine invariant Newton’s methods.

3.2.3 Broyden’s method

The second type of methods, also known as quasi-Newton’s methods, does not require solving the
Jacobian. They construct their own approximation to the true Jacobian updating at each iteration so that it
mimics the behavior of the true Jacobian over the step just taken. The approximate Jacobian is then used
to compute the new search direction. In order to formalize this idea let the Jacobian approximation at
iteration k be denoted be Bk . Assuming that Bk is nonsingular, define the step to the next iteration by

pxxxB kkkkkk Fp +=−= +
−

1
1),(

(3.25)

Let sk and yk denote the differences between successive iterates and successive functions, respectively:

)()(, 11 xFxFyxx kkkkkks −=−= ++

(3.26)

According to the Taylor’s theorem, sk and yk are related by the expression

)()()(
1

0
1 sosxJdtsstxJy kkkkkkk

+≈+= ∫ + (3.27)

The updated Jacobian approximation B k 1+ is required to satisfy

sBy kkk 1+
= (3.28)

This secant condition ensures that B k 1+ and)(
1xJ

k + are behave similarly along the direction sk .

However, it doesn’t say anything about how B k 1+ should behave along directions orthogonal to sk . In

fact, Equation 3.28 can be viewed as a system of n equations in n
2

unknowns (the unknowns are the

components of B k 1+). In the scalar case n=1, Equation 3.28 defines B k 1+ uniquely presents the well-

known secant method. Otherwise, there is a subspace of matrixes B k 1+ of dimension n(n-1) that satisfies

Equation 3.28. The most successful practical algorithm is Broyden’s method, for which the update
formula is

ss

ssBy
BB

k

T

k

T

kkkk

kk

)(
1

−
+=

+ (3.29)

The Broyden’s update makes the smallest possible change to the Jacobian consistent with Equation 3.28.
The following lemma proves this claim.

 34

Lemma 1. Let the matrix norms ||.|| and |||.||| be such that for any nn× matrices B and C and any
n-vector s, the following is true

CBBC ≤

and

() 1=
ss

ss
T

T

Among all matrices B satisfying B ys kk = , the matrix Bk 1+ defined by (3.29) minimizes

 BB k−

The conditions of Lemma 1 is true when ||.|| and |||.||| are both the Euclidean norm, and also when ||.|| is the
Frobenius norm and |||.||| is the Euclidean norm. Under certain assumptions Broyden’s method converges
superlinearly, that is

)(
**

1 xxoxx kk
−=−

+ (3.30)

This asymptotic rate is fast enough for most practical purposes, though not as fast as Newton’s method,
which converges quadratically under similar conditions. It is possible to state formal local convergence
results for Newton’s method and Broyden’s method.

Theorem 3. Suppose that F is continuously differentiable in an open convex set D R
n⊂ .

Suppose that there are an x
*

D⊂ and positive scalars r and â such that F(x
*
)=0,)(

*

xJ is

nonsingular with () () ,, ,* *1

DrxBxJ ⊂≤
−

β and J(x) is Lipshitz continuous on ()rxB ,
*

 with

Lipshitz constant L. Then there exist å > 0 such that if ε≤− xx
*

0 , the Newton sequence

generated by (3.25) is well defined, convergent to x
*
, and satisfies the following inequality

xxkLxxk

*
2

*

1 −≤−
+

β

Roots for which)(
*

xJ is singular are sometimes called degenerate roots. They do not satisfy the

conditions of Theorem 3 and quadratic convergence cannot be expected.

 35

3.2.4 Merit functions: nonlinear equations as optimal problem

Neither Newton’s method not Broyden’s method in their pure forms can guarantee to converging to a
solution of F(x)=0 unless they are starting near solution. Sometimes the components of the function or
Jacobian will blow up, or iterates will erratically through regions far from solutions. Eventually, an iterate
might stray near enough to a root that convergence follows.

Another, more exotic kind of behavior is the cycling, where iterates move between distinct regions of the
parameter space without approaching a root. What is necessary is a way to measure the “goodness” or
“merit” of each point, so that we can decide whether a step is taking us to a better point or whether it
needs to be modified. The most widely used merit function for nonlinear equations is the 2-norm ||F(x)||
and the closely related sum-of-squares.

 ∑
=

=
n

i
i

xFxr
1

2
)(

2

1
)((3.31)

Solutions of the nonlinear equations problem F(x)= 0 obviously have ||F(x)||=0 and therefore are local
minima of these merit functions. Conversely, local minima of ||F|| are not necessary solutions of F(x)=0,
but the strategy of seeking local minima of r is often used, since it has proved to be successful in practice.

In order to extend the convergence domain of the Newton method, some globalizations are in common
use, e.g. damped Newton methods, steepest descent methods, and Levenberg-Marquadt methods. Based
on the latter techniques, some state-of-the-art software has been developed, e.g. the codes from IMSL,
NAG, and MINPACK. In contrast to this, the codes presented here are based on the affine invariant
damped Newton techniques according to Novak (1991).

The usual local Newton techniques, within these algorithms, are combined with a special damping strategy
in order to create globally convergent Newton schemes. One essential property of these algorithms is their
affine invariance.

3.2.5 Global affine invariant Newton’s technique

The short description of the invariant Newton’s technique (Novak 1991) is presented below. The detailed
description can be found in the publication by Hohmann (1993). The purpose of this technique is to solve
a system of n nonlinear equations with n unknowns:

0)...,,(
11

=xxf n

M M (3.32)
0),...,(

1
=xxf nn

or, in the short notation

F(x)=0 (3.33)
Where

 36

F: D R
n→

Where

 x=() RDxnx
nT

⊂∈,...,1

Usually, some a priori information about the solution point x
*
 of Equation 3.33 is available in form of initial

guess x0 . Besides the nonlinearity of F and the dimension n of the system, the quality of this information

will strongly affect the computational complexity of solving Equation 3.33 numerically. It is one of the
shortcomings of the method from the practical engineering point of view. When computer time was
unavailable or very expensive, human analysis how to calculate manually a starting point for a computer
implemented iterative method made good economic sense. With computer power widely available and
relatively cheap, computer time is far cheaper than the time required for human analysis. In effect, the
intent is to transfer intelligence from the user to the numerical algorithm. For this reason Newton method
can not be used alone in practical applications.

Taking Equation 3.33 into account, the complete problem formulation may be written as

F(x)=0, Rx n∈

And x0 as a given initial guess. (3.34)

First, consider the ordinary Newton method for problem Equation 3.34. Let the following equation























∂

∂

∂

∂

∂

∂

∂

∂

==

x

f

x

f

x

f

x

f

xFxJ

n

nn

n

...

......

...

)(':)(

1

1

1

1

 (3.35)

denote the Jacobian (n,n)- matrix, assumed to be nonsingular for all Dx∈ . Then, for a given starting point

Dx ∈
0 , the ordinary Newton iteration reads

k=0,1,2,….

a))()(xFxxJ

kkk
−=∆

xxx
kkk

∆+=
+1

(3.36)
:xk

∆ ordinary Newton correction.

 37

This method is known to be quadratic convergence near the solution x
*
, i.e. only a few iteration steps are

necessary to generate a highly accurate numerical solution for Equation 3.34. However, the scheme
described by Equations 3.36 is only locally convergent, i.e. the initial guess x0 must be close enough to the

solution x
*
. To achieve convergence also for a “poor” initial guesses x0 , one may globalize Equations

3.36 by introducing a damping parameter ë . With that in mined, Equation 3.36 is extended to a damped
Newton iteration k=0,1,2,….

b))()(xFxxJ
kkk

−=∆

xxx
kkkk

∆+=
+ λ1

(3.37)

:λk damping factor (0 < λk < 1)

Indeed, in order to create an efficient and robust method for solving Equations 3.37, this iteration must be
combined with an adaptive step length control. Within such a procedure the dumping factors λk should

be chosen in such a way, that the iterations xk approach successively and fast the solution x
*
. If the

“true” convergence criterion

xxxxxx kkk

1
 , ≠−<−

+

 (3.38)

and the associated stopping criterion

tolxxk
≤−

+

*

1

 (3.39)

are computationally not available, substitute approach criteria must be introduced. Usually, such criteria
are based on the definition of a so-called level function (test function). A widely used level function is
given by

)()(
2

1
)(

2

1
:)(

2

xFxFxFxT
T

== (3.40)

Inequalities 3.38 and 3.39 may be substituted by
)()(

1 xTxT
kk

<
+ (3.41)

 tolxT
k

≤
+

)(
1 (3.42)

The main objection to this type of criteria is that the checks of conditions 3.41 and 3.42 are made in the

 38

“wrong” space, namely in the space of the residuals. Instead of this, the approach and the quality of

iterations xk should be checked in the space of the solution x
*
. This requirement is also a consequence of

the affine invariance principle, which is the leading theoretical concept of the Newton techniques.

Affine invariance. Let’s introduce variable A that denote an arbitrary nonsingular (n,n) -matrix, i.e. let

)(nGLA∈ . Under this condition Equation 3.33 is equivalent to any problem described as

A F(x) = 0 (3.43)

In other words, Equation 3.33 is invariant under the affine transformation

)(,: nGLAAFGF ∈=→ (3.44)

Equivalently, Equation 3.33 is the affine invariant. This property is shared by the ordinary Newton method.
Application of method described by Equations 3.36 to the transformed problem described in Equation 3.44
yields corrections

xxFxJxAFAxFxGxkGx
F

kkkkkk

G

k
∆=−=−=−=∆

−−−−
)()(')(')()()(

1111

 (3.45)

Hence, starting with the same initial guess xx FG
00 = , an identical iteration sequence

}{}{
, . . .2,1,0,. . .2,1,0 xx

F

k k

G

k k ==
= is generated. Consequently, for a damped Newton method of type described

under condition 3.37 the affine invariance property of Equation 3.34 should carry over. Thus, an adaptive
step length control algorithm for condition 3.37 must be formulated in terms of affine invariant quantities
including affine invariant substitute criteria for Inequalities 3.41 and 3.42.

Damping strategy. The above mentioned outstanding choice JB
k

1
:

−= , as well as the selection of an

associated optimal damping factor λk for condition 3.37 is based on a substantial theoretical study. In

order to characterize the nonlinearity of the problem, one may introduce an affine invariant Jacobian
Lipschitz constant ω . Assume that a global constant ω exist such that

∞<∈

−≤−
−

ω

ω

,,

)]()([)(
1

Dyx

xyxJyJyJ
 (3.46)

Then, with the convenient notation

))((: ,: xx kkkkk BJcondhhh =•∆= ω (3.47)

following inequality holds

 39

a))|()|()|(2 BTBBT xtxx kkkk λλ ≤∆+ (3.48)

b) hB kkt λλλ 2

2

1
1)|(+−=

The result shown in Expressions 3.48 implies, that maximizing the descent means minimizing).|(Bt k

λ

Straightforward calculations leads to the optimal choice













=
h

B
k

opt

k

1
,1min)(λ (3.49)

()xk
opt
k JB

1−=

with the extreme properties))((nGLB ⊂

)|()|() 1 BJa tt kkk λλ ≤−
(3.50)

)()()
1

BJb opt

kk

opt

k λλ ≥−

Insertion into (3.47) and (3.49) respectively yields a priory estimate for the damping factor Newton path.

If the Newton path (from x0 to x
*
) does not exist, the damped Newton iteration will, in general, fail to

converge. This situation occurs, if the solution point x
*
 and the initial guess x0 are separated by a

manifold with singular Jacobian. Typically, this case may arise in problems, where multiple solution points

exist. In practical applications, however, different solution points x
*
usually have a distinct physical

interpretation. In any case, for the case of the fail of the damping method we need a method to crossover
of the singular Jacobian manifold. One of such methods is the tensor method. Another solution is always to
have a good initial approximation. It is a possibility of using the method discussed together with the
homotopy method.

Basic algorithmic scheme . The following informal algorithm shows the basic structure of a damped
affine invariant Newton iteration (including step length strategy) due to (Novak 1991). Essentially, this
scheme consist of the outer Newton iteration loop and an inner step length reduction loop. This a posteriori
loop is part of the outer loop and may be performed repeatedly. The Newton step comprises control of
convergence and check for termination, as well as a priori estimate for the damping factor ë. Within the
step length reduction loop just a refined (a posteriori) damping factor is selected and the convergence of
the associated refined Newton iterate is checked again.

Input:

x0 initial guess,

tol required accuracy,

λ0 initial damping factor,

λmin minimal permitted damping factor,

 40

itmax maximum permitted number of iterations,
user routine to evaluate the nonlinear system function F(x),

user routine to evaluate the Jacobian of the system
x
F

xJ
∂
∂=:)(

standard routines for direct solution of linear equations.
Start:
k:=0
Evaluate system
)(xFF kk

=

Newton step: evaluate Jacobian
)(: xJJ kk

=

 compute ordinary Newton correction

 FJx kkk

1
:

−−=∆

compute a priory-damping factor

if(k > 0) }
][

1
,1min{:

0

0

hk

k
=λ

where

 [] λ 1
1

0 : −
− ∆∆

∆∆−∆
= k

kk

kkk

k
xx

xxx
h

else
()

λλ 0

0
:=

k

j:=0

 },max{:
min

0

λλλ
k

=

a posteriori loop computes following trial iterations

 xxx kk
j

k ∆+=+ λ:)(
1

evaluate system

)(:)(
1

)(
1 x j

k
j

k FF ++ =

compute simplified Newton correction

 FJ j
kk

j
kx)(

1
1)(

1 : +
−

+ −=∆

terminate check

exit =()1100
1 =∧⋅≤∆∧≤∆ + λtoltol xx kk

 41

if exit: xxx kkout
0

1
0

1: ++ ∆+=

solution exit.
Compute a posteriori-damping factor

[]










=
+

+

h
j

k

j

k)1(

1 1
,1min:λ

where

 []
x

xx
k

k
j

kj
kh ∆

∆−−∆
= ++

)1(2
:

)(
1)1(

λ
λ

monotonicity check

 conv:= xx k
j

k ∆≤∆ +
)(
1

if conv : xx j
kk

)(
11 : ++ ∆=∆

 xx j
kk

)(
11 : ++ =

 FF
j

kk

)(

11
:

++
=

λλ =k

k:=k+1

if(k>itmax):fail exit

proceed at Newton step

else j:=j+1
 if () exit :

min
failλλ =







=

2
,min:

)(λ
λλ j

k

 { }λλλ
min

,max=

proceed at a posteriori loop.

In order to perform one Newton step with this scheme, the essential computational work turns out to be:
one evaluation of J(x), one evaluation of F(x) and the solution of two linear systems - as long as no a
posteriori step length reduction is necessary. In such a case, each reduction step requires additionally one
evaluation of F and one linear system solution, but this device is activated quite rarely.

Convergence Criteria. The insight into the behavior of the damped Newton algorithm can be given by
the next theoretical consideration. Let us introduce the generalized level sets

 42

() { })|()|(|| BTBxTRxBxG xk

n
k ≤∈= (3.51)

and write the monotonicity criteria for iteration as

 ()BG xx kk |1 ∈+ (3.52)

As long as B is not yet specified, a generalized, but natural requirement for an iterative method is that the
next iteration xk 1+ descends for all possible choices)(nGLB ∈ . Symbolically:

()

() ()I
)(

1

|
nGLB

kk

kk

BxGxG
xGx

∈

+

=
∈

Under certain assumptions, the intersection ()xG k exists and turns out to be a topological path

,]2,0[: Rx n→ the so called Newton path, which satisfies

a)
()() ()

() () ()BxTsBsxT

xFssxF

k

k

|1|)(

)1(
2−=

−=

b)
() ()

() () xxxx

xFxJ
ds
xd

k

k

*

1

1 ,0 ==

−= −

 (3.53)

c) () () xxFxJ
ds
xd

kkks ∆≡−= −
=

1

0|

The constructed Newton path x is outstanding in the respect that all level functions T(x|B) decrease along
x . Geometrically the damped Newton step in xk continues along the tangent of the Newton path ()xG k

with an appropriate length and at the next iterate xk 1+ , the next Newton path ()xG k 1+ will be chosen for

orientation towards x*
. These considerations show the limit of the affine invariant Newton techniques. If

the Newton path from xx *
0 to does not exist, the damped Newton iteration will, in general, fail to

converge. This situation occurs, if the solution point x*
 and the initial guess x0 are separated by the

manifold with singular Jacobian.
Typically, this case may arise in problems, where multiple solution points exist.

Theorem 4. Let XXDF →⊂: be a continuously Frechet-differentiable mapping, such that
F'(x) is continuously invertible for all .Xx ∈ Moreover, it is required for F' to meet the following
affine invariant Lipschitz condition

() xytwxyxFxytxFyF −≤−−−+− 21)))(('))(('('

 43

for all x,y]1,0[, ∈∈ tD and some ù>0. If the initial guess x0 satisfies

() 2)(' 00
1

0 <=∆ −
xFxFx ωω

and the Newton iteration xk stays in the domain D, then the iteration converges to a solution x of
F(x)=0. The convergence is quadratic in the sense that

xCx kk ∆≤∆ +
2

1

for some constant C > 0.

Conclusion. The method discussed above is a computationally very effective for good initial guess.
For practical applications this method must be used with numerical approach giving a good initial guess to
the solution.

3.2.6 Tensor methods

Tenzor methods (Schnabel 1984) are a class of general-purpose methods for solving systems of nonlinear
equations. They are especially intended to solve problems where Jacobian matrix is singular or poorly
conditioned, while remaining at least as efficient as standard methods on nonsingular problems. Their
distinguishing feature that they base each iteration on the simple second order term. This term allows it to
interpolate more nonlinear function then standard linear model based methods without significantly
increasing the cost of forming, storing or solving the model. There are two types of tensor methods,
derivative that calculate an analytic or finite difference Jacobian at each iteration, and secant that avoid
Jacobian evaluations. Both are require no more storage or arithmetic operations per iteration than
standard linear model based methods. The attention to this approach growing after incorporating in the
work (Bouricha 1992).

The main goal of tensor methods is to provide general purpose methods that have rapid convergence even
when F'(x) is singular. In addition, the methods should not experience any special difficulty when J c is
singular or ill conditioned.

Tensor methods are based on expanding the linear model of F(x) around xc to the quadratic model.

 ddTdJxFdxM ccccT 2

1
)()(++=+ (3.54)

Where)(' is xFJandRT cc

nnn
c

××∈ or a secant approximation to it. The three-dimensional object

T c often is referred to as a tensor. The tensor term is selected so that the model interpolates a very small

number, p, of function values from previous iterations. This results in T c being a rank p tensor, which is

crucial to the efficiency of the tensor method. After the model described by the Expression 3.54 is formed,
the problem

 44

find)xM(minimizes that
c 2

dRd n
+∈ (3.55)

is solved; that is, at each iteration of tensor methods, a minimizer of the model is used if no root exist.
The tensor method requires no more derivative or function information per iteration than Newton's method,
and its storage requirement and arithmetic cost per iteration are not appreciably more than for Newton's
method. Bouricha (1992) shows that methods based on Expression 3.54 have good theoretical properties
and good computational performance. Theoretically, tensor methods converge at least as quickly as
Newton's method on nonsingular problems and have been shown to have 3-step Q-order 1.5 convergence
on problems where the Jacobian has rank n-1 at the solution, whereas Newton's method is linearly
convergent with constant 1/2 on such problems. The improvement by the tensor method over the standard
method is substantial, averaging about 19% in iterations and 41% in function evaluations on problems
solved successfully by both methods (Bouaricha 1992). Furthermore, the tensor method solves a
considerable number of problems that the standard method does not, and the reverse virtually never is the
case. The most difficult and expensive part of the tensor method is solving the quadratic model
(Expression 3.54) efficiently.

Derivative tensor methods

Forming the tensor model. The first step in deriving a method based on Expression 3.54 is to choose
the second order term T c . The second order term constructed by asking the model to interpolate
additional values of the function F(x) that have already been computed by the algorithm. In particular,
model asked to satisfy

pkTsxFxFxF
kkckcck

,...,2,1,
2

1
)(')()(=++= εε (3.56)

Where

xx ckk
−=ε , k=1,2,…,p, and xx p

,...,
1 are some set of p past iterates that need not be consecutive.

For the Equations 3.56 to be consistent, the past points }{xk must be selected so that the set of directions

}{sk is linearly independent. In fact a far more restrictive condition enforced. Matrix x 1− always

predetermined to the most recent iterate. Each remaining past iterate included in the set of points to be
interpolated if the step from it to x c− makes an angle of at least è degrees with the subspace spanned be
the steps to the already selected more recent iterates. Here è is some fixed angle between 20 and 45

degrees. In addition, at most n past iterates are considered. This procedure for selecting past iterates

to interpolate is implemented easily using a modified Gram - Schmidt algorithm, and requires about n
2

multiplication and additions.

Equations 3.56 are a set of n× p n
5.1≤ linear equations in the n

3
unknowns comprising T c . Thus T c is

undetermined, following the standard practice in secant methods for nonlinear equations and optimization,

 45

choose T c to be the solution to

T min c F

 (3.57)

RT
nnn

c

××∈

,,...,2,1),)(')()((2 pkFFFtTtosubject kcckkkkc xxx =−−== −−−−−−− εεε

Once the tensor Model 3.56 is formed, a root of the tensor model is found. It is possible that no root exists;
in this case a least squares solution of the model is found instead. Schnabel and Frank (1984) show that
the solution to Expression 3.57 can be reduced to the solution of q quadratic equations with p unknowns
plus the solution of n-q linear equations with n-p unknowns. In the case the main steps of the algorithm
used to solve Expression 3.57 are follow:

1. An orthogonal transformation of the variable space is used to cause the n equations with n

unknowns to be linear in n-p variables, Rd
pn−∈

1 and quadratic only in the remaining p variables,

Rd
p∈

2 .

2. An orthogonal transformation of the equations is used to eliminate the n-p transformed linear
variables from n-q of the equations. The result is a system of q quadratic equations in the p
unknowns, d 2 , plus a system of n-q equations in all the variables that is linear in n-p

unknowns d 1 .

3. A nonlinear unconstrained optimization software package is used to minimize the l 2 norm of the q

quadratic equations with p unknowns d 2 .

4. The system of n-q linear equations that is linear in the remaining n-p unknowns is solved for d 1

An advantage of this algorithm is that it efficiently and stable solves (3.56), whether or not the
tensor model has a root or the Jacobian is nonsingular. The total cost of the above algorithm is the

O(n
3
) cost of Newton's method plus at most an additional cost of O(n

5.2
) arithmetic operations .

An iteration of the tensor method is summarized in the algorithm below. For more details on tensor
methods see Bouricha (1992).

Algorithm of the iteration of the tensor method for dense nonlinear equations.

Presenting n, current iterate:)xF(,

cxc

1. Calculate F'(xc) and check if it is permissible to stop. If not, follow to the next step.

2. Select the past points to use in the tensor model from among the n most recent points.

3. Calculate the second-order term of the tensor model, T c , so that the tensor model interpolates F(x) at

all the points selected in Step 2.

 46

4. Find the root of the tensor model, or its minimizer (in the l 2 norm) if it has no real root.

5. Select the next iterate x using either a line search global strategy or a two-dimensional trust region
 method.
6. Set);()(, xFxFxx cc

−− return to step 1.

The procedure for solving the tensor model in the dense case, however, does not adapt to large sparse
problems. The first step of this process, the orthogonal transformation of the variable space, is crucial to
this approach.

Methods for approximation the Jacobian. For the majority of the practical problems it is not possible
to express the Jacobian explicitly, and in these cases it is necessary to use an approximation B to the
Jacobian. The most obvious one can be obtained by using a forward-difference formula to approximate the
partial derivative.

Two possibilities for dealing with this situation include the use of automatic differentiation and numerical
approximation of the Jacobian by finite differences. Automatic differentiation has the advantage of
producing exact derivatives, which can be essential to the convergence of Newton’s method in some
situations. The practicality of automatic differentiation tools has been demonstrated on a wide range of
applications. They can still require a certain amount of user intervention and can be unwieldy. For this
reason we decided to use the second alternative, approximation of the Jacobian by finite differences.
Solving the tensor model when the Jacobian is sparse.

Implementation of tensor methods for sparse nonlinear equations. The main invention of
Bouricha
(1992) to the tensor methods development is the construction of an efficient algorithm for finding a root of
the tensor model when Jacobian matrix is large and sparse. That is:

Find Rd n∈ such that

 () { } 0
2

1
)(')(

1

2

=++=+ ∑
=

p

k
kccc skd

T
adxFxFdxM (3.58)

where)(' xF
c is large and sparse. Bouricha reduced solution of this equation to the solution of a

system of p quadratic equations with p unknowns, plus the solution of p+1 systems of linear equations that
all involve the same matrix. This matrix is either J(xc), if it is nonsingular and well conditioned, or J(xc)

augmented by p dense rows and columns if J(xc) is singular or ill-conditioned. Bouricha’s (1992) results

are presented below. The algorithm based on the solution of the generalization of Expression 3.54

 Find ()dxMRd
c

n
+∈

2
 minimizes that (3.59)

Let’s the Jacobian matrix is nonsingular and the tensor model has a root. Multiplying Expression 3.59 by

piJs
T

i
,...,1,

1 =−
 gives the p quadratic equations in the p unknowns ,ds

T

ii
=β

 47

() p1,...,i ,0
2

1 2

1

11 ==++ ∑
=

−−
βαβ k

p

k
k

T

ii

T

i JsFJs (3.60)

These equations can be solved for ,,...,1, pi
i

=β and then from (3.58) the equation

 0
2

1

1

2
=++ ∑

=

p

k
kk

JdF βα

 (3.61)

can be solved for d. The entire process required the solution of p+1 systems of linear equations in the

matrix J to compute αkJFJ
11

 and
−−

 k=1,…,p. and the solution of the small system of quadratics (3.61).

Solving the sparse tensor model when Jacobian is nonsingular. This task handled by considering
the equivalent minimization problem to Equation 3.58,

)(min
2

dxQM
R

c
d n

+
∈

 (3.62)

where Q is an nn × orthogonal matrix that has the structure












=

Z

UQ T

T

with

()[]

.J of columns by the spanned

 subspace theof complement orthogonal for the basis lorthonormaan is Z

p1,...,i ,,s are columns whose

matrix p)(nan ,;

1-

p)-(nn

i

1
2/1

*

S

R

SSJJSSJURU TTTpn

×

−
−

−

∈

=

×=∈

Bouricha presents the following algorithm for the sparse tensor model solution when J is nonsingular:

Let .,,F sparse, be RASRRJ pnnnn ×× ∈∈∈

1. Form the q(â) Equations (3.62) by calculating SJ
T

 as follows: factor J and solve

.,...,1, pisyJ ii

T ==

2. Form the positive definite matrix ,RW pp×∈ where () ,,1,
1

pjisJJsW j
TT

iij
≤≤





=

−

 as follows:

 48

() () yysJsiJW i

T

ii

TT
T

ij
== −−

3. Perform Cholesky’s decomposition of W (i.e. W= LL T
) resulting in RL pp×∈ , a lower triangular

matrix.
4. Use an unconstrained minimization software package, to solve

)(min
1

2

2

β
β

qL
R

p

−

∈

or to solve this equation in closed form if p=1.
5. Substitute the values of â and q(â) into






 −+−= −−−

)(
2

1 121 ββ qWSJAFJd T

to obtain the tensor step d. This involves one additional solution, since the factorization of J is already
calculated.

The total cost of this process is the factorization of the sparse matrix J, p+1 back solution using this
factorization, the unconstrained minimization of a function of p variables, and some lower-order (O(n))
costs .

Solving the sparse tensor model when the Jacobian is rank deficient. If the Jacobian matrix is
rank deficient Bouricha shows that it is possible to solve the tensor model by building a calculation process
just described above. The basis of this approach is to transform the tensor model given in Expression 3.56
as follows.

Algorithm. Solving the Sparse Tensor Model

Let .SA, sparse, be RRJ pnnn ×× ∈∈

1. Form the matrix DA
β , where d is the step computed in the previous iteration, dS

t=β , and

).(β
β

diagD = Then construct the augmented matrix RM pnpn)()(+×+∈ as follows

 M =












− IS

DAJ
T

β
 (3.63)

2. Begin the factorization of M, pivoting in rows and columns n+1,…,n+p only if J is (numerically)
singular. If J is nonsingular, perform algorithm for the nonsingular case on the tensor model (Expression

 49

3.58).

3. If J is singular but M is nonsingular, than perform algorithm for nonsingular case on the tensor Model

{ }δδδ SAxJxFxM T
ccc

2

2

1
)()()(++=+ , (3.64)

 where { }dSAdxJxFxF T
ccc

2

2

1
)()()(++=

and SDAxJxJ T

cc β
+=)()(, and any required value of the form x= bJ

1−
 or x= bJ

T−
 is found by

solving the augmented system with Matrix 3.63 or the analogous transposed system for x. Then set

d= δ+d .

4. If M is singular, use the singular Newton step calculated in the next section, instead of tensor step.

The arithmetic cost per iteration of this algorithm is the cost of a sparse matrix factorization of the

Jacobian J or the augmented matrix M plus the costs for p+1 back solves plus the O(p
4

) cost of using

minimization package for solving q(â) equations if p>1, plus some O(n) costs. Thus the main additional
cost in relation to Newton's method again is p additional forward and back solves per iteration.

Solving the Newton model along with the sparse tensor model. If the Jacobian matrix J is
nonsingular, then the calculation of the tensor step described above produces a sparse LU factorization of
J. In this case, the Newton step is simply found by performing one additional pair of triangular matrix,
solves the system

 Jd=-F
(3.65)

That is, since

 J = PLUP
TT

21

(3.66)

where RL mn×∈ is unit lower triangular matrix, and PP 21
 and are row and column permutation matrices.

First solve

 Ly=c
(3.67)

for y, where y= dPU T

2 and c=- FP1 . Then solve

 Uz = y
(3.68)

 50

for z, where z = .
2

dP
T

 Finally, d= .
2
zP Otherwise the matrix J is singular, so Equation 3.65 is either zero

or an infinite number of solutions. Therefore, it is necessary to solve the least squares problem

FJd
Rnd

+
∈

2
min

(3.69)

The method that is possible to solve this problem is an extension of the method of Peters and Wilkinson
(1970) that was suggested by Bjorck and Duff (1980).

Implementation of tensor methods for sparse nonlinear equations. The global strategy that is
used in this implementation is a standard line search, because of its greater simplicity and because the two-
dimensional trust region method requires two additional matrix-vector multiplication involving the Jacobian
matrix.

Algorithm. Given current iterate)(, xFx cc .

1. Calculate J=F'(xc) and check whether to stop. If not, follow to the next step:

2. Form the second-order term of the tensor model, T c , so that the tensor model interpolates F(x) at the

most recent past point (i.e., p=1).
3. Factorize J using the sparse matrix software package.
4. If J has full rank, then perform algorithm for nonsingular Jacobian on the tensor model

() ()∑ =
++=+ p

k kcc s kd
TJdxFdxM

1

2

2

1
)(α , to compute the tensor step d t and go to Step 6. Else:

4.1 Augment J by adding p rows and columns as follows (in this implementation, p=1). In general, column

k of A=ak , column k of S= sk , and),(dsdiagD
T

k
=

β where d is the step computed in the previous

iteration.

 M=












IS

DAJ
T

β
 (3.69a)

4.2 Complete the factorization of the augmented matrix M as follows. Let r denote the rank of J.
4.2.1 Update the lower left rectangular p*r submatrix, and the upper right rectangular r*p submatrix of

the augmented matrix M, using the multipliers stored in the L factor of the LU factorization of J.
4.2.2 Factor the lower right square (n-r+p)(n-r+p) submatrix of the augmented Matrix 3.69a using the

sparse matrix software package.
4.2.3 Update the factorization of the entire augmented Matrix 3.69a by combining the LU factorization

of the submatrix in Step 4.2.2, the updated submatrices in Step 4.2.1, and the LU factorization of J
into one LU factorization of the augmented Matrix 3.69a.

5. If J was singular but the augmented matrix M has full rank, then perform algorithm on the tensor
 model

 51

() { }δδδ SAJxFxM T
cc

2

2

1
)(++=+ ,

 where

() () { } ,,
2

1 2

SDAJJdSAJdxFxF TT
cc β

+=++=

And d is the step computed in the previous iteration, to compute the step δ . Then set δ+= dd t and go

to Step 6. Else:

5.1 Calculate the Newton step d n from the LU factorization of J by Bjorck and Duff (1980) method to

find some solution to FJd
Rd n

+
∈

2min

5.2 Select the next iterates x+ using line search algorithm, where d n is the search direction, and jump to

Step 7.
6. Select the next iterate x+ using a line search global strategy as follows:

6.1 If dx tc
+ is acceptable, than establish dxx tc

+=
+ and jump to Step 7. Else

6.2 Calculate the Newton step d n from the LU factorization of J (or as in Step 5.1 if J is singular). Then

calculate dxx nc

n λ+=
+ for some ë>0, using algorithm for quadratic backtracking line search. If the

tensor step is a descent direction, then calculate dxx tc

t λ+=
+ for some ë>0, using algorithm for

quadratic backtracking line search.

6.3 If xxxxFxF n

ttn +

+++
−−+>+ else ,x then ,)()(

22

7. Set)()(, xFxFxx cc ++

−− . Return to step 1.

The sparse tensor code terminates successfully if the relative size of (xx c

−
+) is less than macheps2/3 ,

or)(xF
+ is less than macheps2/3; it terminates unsuccessfully if the iteration limit is exceeded. If the

last global step fails to locate a point lower than xc in the line search global strategy, or the relative size of

() ()xFxJ T
++ is less than macheps1/3, the method stops and reports this condition; this may indicate either

success or failure.

Conclusion. The tensor method more robust then damped Newton's. The tensor method is a special
case of the regularization operator approach. (Furi 1969, Tihonov 1986). Theoretically it is possible to find
situation where tensor method will be unsuccessful because the regularization operator used sometimes
can loose the compactification property. The detailed description of the methods for the ill-posed problems
solution and analysis of the regularization operator properties can be found in publication by Tihonov

 52

(1986). Method can be used by experienced users for solving practical problems but some probability
exists that method will fall. Inexperienced user needs more robust approach.

3.2.7 Methods based on homotopy

This method is very robust and capable of achieving global convergence at high probability.

Globally convergent homotopy methods . It was mentioned above that the Newton-based methods
suffer from a major shortcoming. They are not guaranteed to converge to a solution of F(x)=0 but only, at

best, a local minimum of)(xF . There are algorithms for finding zeros or fixed points of nonlinear

systems of equations that are globally convergent for almost all starting points, i.e. with probability one.
The essence of all such algorithms is that the construction of an appropriate homotopy map and then
tracking some smooth curve in the zero set of this homotopy map.

Homotopies are a traditional part of topology, and have found significant application in nonlinear functional
analysis and differential geometry. The concepts of homotopy maps, continuation, incremental loading, and
invariant imbedding are widely used and intertwined. Let Homotopy methods be the generic terms,
including continuation, parameter continuation, incremental loading, displacement incrementation, invariant
imbedding, and continuous Newton methods.

Parameter continuation is well established technique in numerical analysis, with the basic idea being to
solve a series of problems as some parameter is slowly varied, using a locally convergent iterative
technique for each problem, and the solution of the previous problem as the starting point for the current
problem). Similar techniques in engineering are known as incremental loading and displacement
incrementation. For the most part all these methods have rather restrictive hypotheses and the connection
with topology had not been made

A fundamental breakthrough occurred with the truly globally convergent simple fixed point algorithms.
These algorithms were grounded in topology, constructive, potentially extremely powerful, but horribly
inefficient in their early forms.

Another significant advantage was the differential equation formulation of continuation, proposed in
various forms by Rheinboldt (1982). Although the underlying homotopy map in these differential equation
forms may have been the same as in “classical” continuation, it is important to realize that the algorithms
and implementations are fundamentally different. Despite considerable success on practical problems and
a large amount of supporting theory, all these homotopy methods suffered from a fatal flaw. A Jacobian
matrix somewhere could become singular, and the computer implementation would either experience great
difficulty or the method would fail completely.

The next advance was the development in 1976 by S.N.Chow (Chow 1978) of probability one homotopy
methods. The thorn of singular Jacobian matrices was finally removed, since these methods were
specifically constructed to not have any singular points. The phrase “probability one” refers to the
supporting theory, which says that for almost all choices of some parameter vector involved into the
homotopy map, there are no singular points and the method is globally convergent. Again, while globally
convergent probability one homotopy algorithms may have a superficial resemblance to earlier homotopy

 53

algorithms, it is important to note that the philosophy in fundamentally new. Furthermore, because of this
philosophical difference, there are subtle differences in mathematical software for probability one
homotopy algorithms from the other continuation methods.

Algorithms for dense Jacobian matrices. Let E
p

 denote p-dimensional real Euclidean space. The

following four lemmas from Watson (1985) are the basis for the homotopy algorithms.

Lemma 2. Let g: EE
pp → be a C

2
map, Ea p∈ , and define ,]1,0[: EE

pp

a
→×ρ by

))(1()(),(ayygy
a

−−+= λλλρ

Then for almost all Ea p∈ there is a zero curve ã of ρa
 emanating from (0,a) along which the

Jacobian matrix D),(y
a

λρ has full rank.

Lemma 3. If the zero curve ã in Lemma 2 is bounded, it has an accumulation point (1,y) where
g(y)=0. Furthermore, if Dg(y) is nonsingular, then ã has finite arc length.

Lemma 4. Let EEF pp →: be a C
2
 map such that for some r > 0, xF(x) �0 whenever .rx =

Then F has a zero in { }rEx p ≤∈ x , and for almost all ,, raEa p
<∈ there is a zero curve ã

of

))(1()(),(axxFx
a

−−+= λλλρ ,

along which the Jacobian matrix),(xD
a

λρ has full rank, emanating from (0,á) and reaching a

zero x of F at ë=1.

 Furthermore, ã has finite arc length if DF(x) is nonsingular. Lemma 4 is a special case of the following
more general lemma.

Lemma 5. Let C a be :
2

EEF pp → map such that for some r > 0 and r1 > 0, F(x) and x-a do not

point in opposite directions for .1, rrx <= α Then F has a zero in { }rxEx p ≤∈ , and for

almost all 1, raE
p

<∈α , there is a zero curve ã of

))(1()(),(axxFx

a
−−+= λλλρ

along which the Jacobian matrix),(xD
a

λρ has full rank, emanating from (0,á) and reaching a

zero x of F at ë=1.

 54

Furthermore, ã has finite arc length if DF(x) is nonsingular. The general idea of the algorithm is apparent
from the Lemmas: just follow the zero curve ã emanating from (0,W) until a zero Y of F(Y) is reached (at
ë=1). The homotopy map is

))(1()(),(WYYFYw −−+= λλλρ (3.70)

that has the same form as a standard continuation or embedding mapping. However, there are two crucial
differences. In standard continuation, the embedding parameter ë increases monotonically from 0 to 1 as
the trivial problem Y-W=0 is continuously deformed to the problem F(Y)=0. The present homotopy
method permits ë to both increase and decrease along ã with no adverse effect. This turning point
presents no special difficulties. The second important difference is that there are no any “singular points”
that afflict standard continuation methods. The way along which zero curve ã of ñw is followed, and the
full rank of ρwD along ã, guarantees this. According to Lemma 2, ã cannot just “stop” at an interior

point of [0,1] E
p×

The homotopy map ρa
exists from (p+1)-dimensional space to p-dimensional space. This mismatch of

dimensions is a double-edged sword since the extra dimension permits “lifting” the original problem to
obtain a problem with no singularities and a full rank Jacobian matrix, and that can be solved from an
arbitrary starting point. However, the Jacobian matrix

[]),(),(),(xDxDxD
axaa

λρλρλρ λ
= (3.71)

of ρa
 is rectangular (p(P+1)), and this is an essential aspect of the lifted problem. By contrast, the

Hessian matrices (Rabinowitz 70)) in nonlinear optimization and the Jacobian matrices in locally
convergent algorithms for nonlinear systems of equations are always square. The p(p+1) shape adds a
combinatorial aspect to the numerical linear algebra, and this subtle difference is important in computer
implementations.
The zero curve ã of the homotopy map can be tracking by three primary algorithmic approaches:
1) an ODE-based algorithm
2) a predictor corrector algorithm
3) a version of Rheinboldt’s linear predictor, quasi-Newton corrector algorithm (an augmented Jacobian

matrix method).

ODE-based algorithm. The detailed description of this algorithm has been published by Watson
(1986). A short description is presented below.

Assuming that F(Y) is C
2
and W is such that Lemma 2 holds, the zero curve ν is C

1
 and can be

parameterized by arc length s. Thus)(),(sYYs == λλ along ã and

 () 0)(),(=sYs
w

λρ (3.72)

 55

identically in s. Therefore

 () () 0)(),()(),(=
















∂
∂
∂
∂

=

s
Y
ssYsDsYs

ds
d

ww

λ

λλ ρρ (3.73)

1,

2

=






ds

dY

ds

dλ

assuming ëY(0)=W

the zero curve í is the trajectory of the initial value problem (3.72)-(3.73). When ë(s)=1, the corresponding
Y(s) is a zero of F(Y). Typical ODE software requires (dë/ds,dY/ds) explicitly. One of ways is to use
Algebraic Differential software (Petsold 1989). Another way, established by Watson (1986) , is
calculation (dë/ds,dY/ds) as a unit tangent vector to the zero curve í by finding a one-dimensional kernel
of the p*(p+1) Jacobian matrix

))(),((sYsD
w

λρ

that has full rank by Lemma 2. The crucial observation is that the last p columns of ρw
D , corresponding

to ρwyD may not have rank p, and even if they do, some other p columns may be better conditioned. A

conceptually elegant algorithm is to compute the QR factorization with column interchanges of ρw
D ,

where Q is a product of Householder reflections (Rabinowitz 70). The main defect is impossibility of
using for sparse matrix calculations.

The descriptions of the algorithms developed by Watson (1986) are presented below for sparse matrixes,
and for dense matrices. For small problems (n < 200), it is possible to use the method developed for dense
matrices. A big number of practical applications can be handled using dense matrices tools.

Algorithm for dense matrices.

1. Set s:=0,y:=(0,a), ypold:=yp:=(1,0,…,0), restart:=false,error:=initial error tolerance for the ODE solver

(.
2. If y

1<0 then move to Step 23.

3. If s>some constant, then
4. S=0

5. Compute a new vector a from (λ
λλ

−
−+=

1

)1()(xxF
a) If

 ,a *constant1a oldoldanew +>− then go to 23

6. ode error:=error.

7.
error.:error

,constant*) (

<<=

>−
∞

toleranceode

thensteplengtharclastypoldypif

 56

8. ypold:=yp
9. Take a step along the trajectory of (5-7) with ODE solver, yp=y'(s) is computed for the ODE solver

by 10-12 .
10. Find a vector z in the kernel of)(yD aρ using Householder reflections.

11. If -z.:z ,0 =< thenypoldz t

12. yp:=z/ z

13. If the ODE solver returns an error code, then go to Step 23.
14. If 99.0

1
<y , then go to 2.

15. If restart=true, then go to 20.
16. restart:=true
17. error:=final accuracy desired.
18. If 1

1
≥y , then set (s,y) back to the previous point (where 1

1
≤y).

19. Go to Step 4.
20. If 1

1
<y then go to Step 2.

21. Obtain the zero (at 1
1
=y) by interpolating mesh points used by the ODE solver.

22. Normal return.
23. Error return.

Algorithm for sparse matrix. The general theory applies equally well here. Since the Jacobian matrix
has rank n along ã, the derivative ()dsddsdx /,/ λ is uniquely determined by Equation 3.73 and
continuity, and the initial value problem can be solved for x(s),ë(s). The difficulty now is that the first n
columns of the Jacobian matrix),(λρ xD a are definitely special, and any attempt to treat all n+1

columns uniformly would be disastrous from the point of view of storage allocation. Watson used for the
),(λρ xD a =0 equation solution a preconditioned conjugate gradient method. The description of the

method is not presented here because later we will present a detailed review of the linear equations
solution methods. The only important detail is the choice of the preconditioning matrix Q. Watson takes
for Q the modified Cholesky decomposition of M. For sparse problems the logic of tracking the zero
curve ã is exactly the same as for the dense Jacobian matrix.

The normal flow algorithm. As the homotopy parameter vector varies, the corresponding homotopy
zero curve ã also varies. This family of zero curves is known as the Davidenko flow (Rabinowitz 1970).
The normal-flow algorithm is so called because the iterates converge to the zero curve ã along the flow
normal to the Davidenko flow. The normal flow algorithm has four phases: prediction, correction, step size
estimation, and computation of the solution at ë=1.

Prediction phase. Assume that several points () ())(),(,)(),(22

2
11

1 ssss YPYP λλ == on í with
corresponding tangent vectors (dë/ds,dY/ds) have been found, and h is an estimate of the optimal step to
take along í. The prediction of the next point on í is

)(2

0 hpZ s += (3.74)

where p(s) is the Hermite cubic interpolation ())(),(sYsλ at ss 21 and .

 57

Corrector phase. Starting at the predicted point Z
0

, the corrector iteration is

[] 0,1,...n),()(1 =−= ◊+ ZwZDZZ nn
w

nn ρρ (3.75)

where [] ...)(Z
n

D wρ
◊

 is the Moore-Penrose pseudoinverse of the p*(p+1) Jacobian matrix ρw
D .

Step size estimation phase. A corrector step Z∆ is the unique minimum norm solution of the equation
 [] .wZD w

ρ
ρ

−=∆ For dense problems the kernel of [].D wρ is found by computing a QR factorization and

then by back substitution. By applying this QR factorization to ñw and using back substitution again, a
particular solution v for Equation 3.75 can be found. When the iteration of Equation 3.75 converges, the

final iterate Z
n 1+

 is accepted as the next point on í. This approach can not be applied to the sparse

matrices.

Finally, the algorithm is following:

1. s:=0, y:=(0,a), h:=0.1, firststep:=true, arcae, arcre:=absolute, relative error tolerances for tracking ã,

ansae, ansre:= absolute, relative error tolerances for the answer.
2. If firststep=false then
3. Compute the predicted point Z0 use initialization procedure else

4. Compute the predicted point Z0 using a linear predictor based on y=(0,a) and the tangent there.
5. Iterate with Equation 3.75 until either

 ZarcrearcaeZ kk +≤∆ or

 4 iterations have been performed.
6 If the Newton iteration did not converge in 4 steps, then
7 h:=h/2
8 If h is unreasonably small, then return en error flag.
9 Go to Step 2.
10 firststep:=false.
11 If 1

1
<y , then compute a new step size h and go to Step 2.

12 Do Steps 13-18 some fixed number of times
13 Find s such that p(s)=1, using yold, ypold, y, yp in (17)
14 Do two iterations of step (18) starting with . with ending),(20 ZspZ =
15 If

 ZansreansaeZZ 112
1 1 +≤∆+−

 than return (solution has been found)

16 If then ,12
1 ≥Z

17 Y:= ZypZ 22 at tangent :, =

 58

 Else:
18. yold:= Zat tangent :ypold , 22 =Z
19. Return with an error flag.

The logic of the predictor, corrector, and step-size estimation phases of this algorithm is identical to that
given in the dense case. Similar to the ordinary differential equation based algorithm, the difference
between the dense and sparse Jacobian matrix cases is the low-level numerical linear algebra. The main
linear algebra problem is the solution of Equation 3.75 using the same matrix splitting, preconditioning
matrix, and conjugate-gradient algorithm as for the sparse ordinary differential equation based algorithm.

Augmented Jacobian matrix algorithm. Augmented Jacobian matrix algorithm has been described
by Rheinboldt (1983). This algorithm has four major phases: prediction, correction, step-size estimation,
and computation of the solution at ë=1.

Prediction phase. The prediction phase is exactly the same as in the normal flow algorithm.

Correction phase. Starting with the predicted point Z0 , the correction is performed by quasi-Newton
iteration defined by

()
,...1,0,

0)2(

1

1 =













−=

−

+ kZ

T

A
ZZ

k
a

t

k
kk ρ

 (3.76)

where Ak is an approximation to the Jacobian matrix ()ZD k

aρ . The last row of this matrix insures that

iterates lie in a hyperplane perpendicular to the tangent vector T 2 . Equation 3.76 is the quasi-Newton
iteration for solving the augmented nonlinear system

0
)(

)(
0)2(

=





− ZyT

y
t

aρ

A corrector step Z k∆ is the unique solution to the equation






−
=∆








0

)(
)2(

Z
Z

T

A k
ak

k

k ρ

Step-size estimation. At each point Pk with tangent T k along ã, the curvature is estimated by the
formula

)2/sin(
2

αk

k

k

s
w

∆
=

where

 59

() . ,arccos , 11)(
1

PPsTT
s
TTw kk

k
ktk

k

k

kk
k −−

−

−=∆=
∆
−= α

This curvature data can be extrapolated to produce a prediction for the curvature for the next step

().1

1

ww
ss

s
w kk

kk

k
kk

−

−

−
∆+∆

∆+=ξ

As with the normal-flow algorithm, additional refinements on the optimal step size are made in order to
prevent chattering and unreasonable values.

Computation of the solution at ë=1. The final phase of the algorithm for computation of the solution
at ë=1 is entered when a point P2 is generated such that 12

1 ≥P . The algorithm for finding this solution is

a two-step process that is repeated until the solution is found. First, starting from a point Pk a prediction

Z k 2− for the solution is generated such that Z k 2− =1. Second, a single quasi-Newton iteration is

performed to produce a new point Pk 1+ close to ã, but not necessarily on the hyperplane ë=1. The
altering process of computing a prediction and taking a quasi-Newton step is repeated until the solution is
found.

In summary, the algorithm is:
1. s:=0;; y:=(0,a); ypold:=(1,0); h:=0.1; failed:=false; firststep:=true; arcae, arcre:=absolute, relative error

tolerances for tracking ã; ansae, ansre=absolute, relative error tolerances for the answer.
2. Compute the tangent yp at y, and update the augmented Jacobian matrix.
3. If firststep=false then
4. Compute the predicted point
5. Compute the predicted point Z0 using a linear predictor based on y and yp.
6. If failed=true then
7. Compute the augmented Jacobian matrix at Z0 .

8. Compute the next iterate Z1

9. Limit:=2([-)(log10 yarcrearcae +]+1). Repeat steps 10-11 until either

 ZarcrearcaeZ kk +≤∆

 or
 limit iterations have been performed
10. Update the augmented Jacobian matrix.
11. Compute the next iteration
12. If the quasi-Newton iteration did not converge in limit steps, then
13. h:=h/2; failed:=true.
14. If h is unreasonably small, then return with an error flag.
15. Go to Step 3.
16. Compute the tangent at the accepted iterate Z* and update the augmented Jacobian matrix
17. Compute the angle á between the current and previous tangents

 60

18. If á>ð/3, then
19. H:=h/2; failed:=true.
20. If h is unreasonably small, then return with an error flag.
21. Go to Step 3.
22. Yold:=y, ypold:=yp, y:= Z* , yp:=tangent computed in step 16, firststep:=false, failed:=false.
23. If ,1

1
<y then compute a new step size h with

 () ,
2
1

,min

,01.0

4/1

min







 −+=

=

yoldyyarcrearcaekδ

ε

and go to Step 3.
24. Find s such that p(s)=1, using yold, ypold, y and yp yopp:=yold, Z0 =p(s).

25. Limit:=2([-)(log10 yarcrearcae +]+1). Do steps 26-33 for k=2,…,limit+2.

26. Update the augmented Jacobian matrix
27. Take a quasi-Newton step.
28. If

 ZansreansaeZP kkk 221
1 1 −−+ +≤∆+−

 then return (solution has been found)

29. If ,11
1 ansreansaeP k +≤−+

 Then
 PZ kk 11 : +− =
 else do steps 30-33.
30. yold:=y, y:= Pk 1+
31. If 1,bracket and

11
=λyyold then yopp:=yold.

32. Compute Z k 1− with the linear predictor using y and yold.

33. If Z compute then , 1)-(k1 yoppyyZ k −>−−
 with the linear predictor using y and yopp

34. Return with an error flag.

Augmented sparse Jacobian matrix algorithm. The augmented Jacobian matrix algorithm for
sparse Jacobian matrices differs from the dense algorithm in the following three respects:
1. Like the sparse normal flow and ODE-based algorithms, the low-level numerical linear algebra is

changed to take advantage of the sparsity of the problem.
2. Quasi-Newton iterations are abandoned in favor of pure Newton iterations;
3. Rheinboldt's step size control is implemented more faithfully because of the use of Newton iterations.

Except for these three changes, the logic for tracking the zero curve ã is exactly the same as for the dense
algorithm.

Conclusions. The homotopy algorithm the most robust between the other algorithms. The most useful
and effective the algorithm based on the augmented Jacobian, especially with the new methods for
augmented matrices handling, developed in the last years.

 61

3.2.8 Solving linear equations

All the methods for solving nonlinear equations involve the solution of many sets of linear algebraic
equations. When the number of equations (n) becomes very large, it is clear that two difficulties can
occur: the computation time required may become too long and/or there may be not enough storage to
contain the matrices and factorizations required. Methods for the solution of the linear equations

 Ax = b (3.77)

can be divided into two categories: direct methods where matrix A is transformed into a matrix that is
easily invertible, and iterative methods where matrix A is used directly to generate a sequence of vectors
which tend to the solution of equations.

Another type of methods is based on the division of the matrices by symmetric and asymmetric positive
definite and indefinite. The most effective methods in each of these categories will be described where A
is a large sparse matrix, which is usual situation for network problems.

Direct methods. It is important to distinguish between two types of matrices:

A stored matrix is one for which all n
2

matrix elements a ij are stored in the computer memory. It is very

important to use standard building blocks in application codes. They are extremely useful for simplifying
the design of codes while guaranteeing portability and efficiency. The building blocks for much of our
work, both in the solution of sparse systems, and in more complicated are as of constructing and solution
the network problems, are the Basic Linear Algebra Subprograms known as BLAS (Dongarra 1990).
For reasons of efficiency, we are going to use the higher level of BLAS, in particular, the LEVEL 3
BLAS that includes kernels like the matrix-matrix multiply routine. Later we will discuss the effect of
using BLAS in the solution of linear equations when the coefficient matrix is sparse.

A sparse matrix is one for which most of the matrix elements are zero, and nonzero elements can be
either stored in some special data structure or regenerated as needed. The order of n is frequently as large
as several tens of thousands and occasionally even larger. This type of matrices the more important for
network problems and will be discussed below. The significant benefit from sparsity does not come from
the cost reductions, but rather from the fact that problems that were hitherto infeasible can now be solved.
For network problems there was a near-linear relationship between the number of floating-point operations
and the number of unknowns in the sparse system of equations. Matrix sparsity and graph theory are
subjects that can be closely linked. The pattern of a square sparse matrix can be represented by a graph,
for example, and then the results from graph theory can be used to obtain sparse matrix results. Here we
will not discuss the computer architecture and its influence on the algorithms. We will be restricted to the
personal computers and will not touch the problems arising from the mainframe computer architecture.

Sparsity is useful not only in solving the equations efficiently, but also in reducing the number of function
evaluations necessary to estimate Jacobian matrix of the nonlinear system of equations. An algorithm due
to Curtis, Powel can accomplish this, and Reid who is discussed later (Rabinowitz 1970).

According to Duff: “I feel strongly that the only way of solving really challenging linear algebra problems

 62

is by combining direct and iterative methods through either conventional or novel preconditioning”(Duff
1996).

Unifrontal methods. In a unifrontal scheme the factorization proceeds as a sequence of partial
factorization and elimination on dense submatrices, called frontal matrices. Although unifrontal methods
were originally designed for the solution of finite-element problems, they can be used on assembled
systems. For assembled systems, the frontal matrices can be written as

 






FF

FF

2221

1211 (3.78)

where all rows are fully summed (that is there are no further contributions to come to the rows in Matrix
3.78 and the first block column is fully summed. This means that pivots can be chosen from anywhere in
the first block column and, within these columns, numerical pivoting with arbitrary row interchanges can be
accommodated since all rows in the frontal matrix are fully summed. Let’s assume that without loss of
generality the pivots, chosen in the square matrix F11 of (3.78) F11 , are factorizes, and the Gaussian

elimination multipliers overwrite F 21 and the Schur complement

 FFFF 12

1

112122

−− (3.79)

is formed using dense matrix kernels. The submatrix consisting of the rows and columns of the frontal
matrix from which pivots have not yet been selected is called the contribution block. In the case above,
this is the same as the Schur complement matrix.

At the next stage, further rows from the original matrix are assembled with the Schur complement to form
another frontal matrix. The frontal matrix is extended in size, if necessary, to accommodate the incoming
rows. The overhead is low since each row assembled only once and there is never any assembly of two
(or more) frontal matrices. The entire sequence of frontal matrices is held in the same working array.
Data movement is limited to assembling rows of the original matrix into frontal matrix, and storing rows
and columns as they become pivotal. There is never any need to move or assemble the Schur complement
into another working array. One important advantage of the method is that only this single working array
need reside in memory. Rows of A can be read sequentially from disk into the frontal matrix. Entries in L
and U during LU decomposition of A can be written sequentially to disk in the order they are computed.

The unifrontal method works well for matrices with small profile, where the profile of a matrix is a
measure of how close the nonzero entries are to the diagonal and is given by the expression:

 ∑
= ≠≠ 











−+−
n

i

ji
a

ji
a jiij1 00

)(max)(max (3.80)

where it is assumed the diagonal is nonzero so all terms in the summation are non-negative. For matrices
that are symmetric or nearly so, the unifrontal method is typically preceded by an ordering method to
reduce the profile such as reverse Cuthill-McKee (RCM) (George 1973). This is typically faster than the

 63

sparsity-preserving orderings commonly used by a multi-frontal method (such as nested dissection and
minimum degree). However, for matrices with large profile, the frontal matrix can be large, and an
unacceptable amount of fill-in occurs. In particular, we lack effective profile reduction strategies for
matrices whose pattern is very asymmetric.

The unifrontal scheme can easily accommodate numerical pivoting. Because all rows in Matrix 3.78 are
fully summed and regular pivoting can be performed, it is always possible to choose pivots from all the
fully summed columns.

In a multifrontal method, the sparse factorization proceeds by a sequence of factorizations on small full
matrices, called frontal matrices. An important feature of these methods is that arithmetic is performed on
dense submatrices and Level 2 and Level 3 BLAS (matrix-vector and matrix-matrix kernels) can be used.
Both sparse LU and QR factorizations can be implemented within this framework. The ordering for the
sequence of computations and the frontal matrices are determined by a computational tree, called
assembly tree, where each node represents a full matrix factorization and each edge transfers data from
child to parent node. This assembly tree is determined from the sparsity pattern of the matrix and from a
reordering that reduces the fill-in during the numerical factorization (such as the minimum degree
ordering). During the numerical factorization, elimination at any node can proceed as soon as those at the
child nodes have completed and the resulting contributions from the children have been summed
(assembled) with the data at the parent node. This is the only synchronization that is required and means
that operations at nodes that are not ancestors or dependents are completely independent.
The development and production of sparse asymmetric solvers has now become a veritable growth
industry. The multi-frontal and super-nodal techniques, so powerful in the symmetric case, have been
extended to asymmetric systems (Duff 1996).

The solution of a sparse matrix system is usually divided into several phases:
Analysis of the sparsity structure to determine a pivot ordering.
Symbolic factorization to generate a structure for the factors.
Numerical factorization.
Solution of set(s) of equations.

In some cases, particularly when it is important to consider numerical values when choosing pivots, the
first three phases are combined into an analyze-factorize phase. Additionally, there may be some
partitioning scheme prior to all these phases, which are then executed on submatrices from the partition.
The relative speeds of the four phases are very dependent on the details of the algorithm and
implementation, the problem being solved, and the machine being used. However, one reason for
separating the first two phases from the third is that it is usually much faster to perform an analysis and
symbolic factorization without reference to numerical values. This does mean that there must be some
way of incorporating subsequent numerical pivoting in the factorization if general problems are to be
solved. Most of the algorithms are based on matrix factorization methods like Gaussian elimination, and
part-way through the matrix factorization, when some of the factors are calculated, the remaining matrix is
composed of original matrix entries and filled-in from the earlier stages. Let us refer to this matrix as
reduced matrix.

Finally, the relationship between graphs and sparse matrices is ubiquitous in sparse matrix work. Using a
symmetric sparse matrix of order n, we associate a graph with n vertices, and an edge (I,j) between

 64

vertices I and j, if and only if entry 0≠a ij . A clique is a complete subgraph, that is all vertices of the

subgraph are pairwise connected by edges in the graph. Asymmetric matrix we associate with directed
graph where the edges are now directed. A bipartite graph is sometimes associated with an asymmetric
(even non-square) matrix. This has two sets of disjoint vertices identified with rows and columns of the
matrix respectively. An edge (I,j) exist from the row vertices to the column vertices if and only if entry

0≠a ij . The elimination tree is defined by the Cholesky (George 1973) factors of a symmetric matrix and

has an edge (I,j) if the first nonzero entry below the diagonal in column j of the lower triangular Cholesky
factor is in row i.

Three principal problems with multi-frontal methods, as practiced in the 1980s, were that
there could be significant overheads for data movement,
they assumed structural symmetry, and
the analyzes phase assumed that any diagonal entry could be chosen as pivot.

In the first case, continuing with one frontal matrix rather than stacking it and starting another can reduce
data movement. Taken to the extreme, this strategy would give a uni-frontal scheme. This technique was
incorporated in the HSL code MA38. This is clearly fine if the matrix is symmetric in structure but
surprisingly can perform quite well for asymmetric matrices. Although it can be inefficient when the
matrix is markedly asymmetric. For asymmetric systems, a preordering to place non-zeros on the diagonal
is often very helpful and is in option in the HSL code MA41. Davis and Duff (1993) have extended the
multifrontal scheme to general asymmetric matrices, using rectangular fronts and directed cyclic graphs.
This extension works well on most highly asymmetric systems but can be poorer then MA41 when the
matrix is not highly asymmetric.

The third problem is more difficult and is present for any technique that performs an analyze phase
separation from the numerical factorization. Clearly, one way to resolve this is to combine the analyze and
factorize phases but then many of the benefits of the fast analyze phase are lost. A certain amount of
numerical or additional structural information can be supplied to the analyze phase.

The other main approach to using higher order level BLAS in sparse direct solvers is generalization of
sparse column factorization. These can either be left-looking (or fan-in) algorithms, where updates are
performed on each column in turn by all the previous columns that contribute to it. Then the pivot is chosen
in that column and the multipliers calculated; or a right-looking (or fan-out) algorithm where, as soon as the
pivot is selected and multipliers calculated, that column is immediately used to update al future columns
that is modifies. Higher level BLAS can be used if columns with a common sparsity pattern are
considered together as a single block or super node and algorithms are termed column-super node, super
node-column, and super node-super node depending on whether target, source, or both are super nodes.

One of approaches for handling duct nets is the use of symmetrical matrices. Such symmetrical matrix is
presented below.

Ordering for symmetric problems. Although predated thirty years ago (Markowitz 1957), scheme S2
in the paper by Tinney and Walker (1967) established the main ordering for symmetric problems that has
remained almost unchallenged until this present day. Scheme S2 is commonly termed the minimum degree
ordering because, at each stage, the pivot chosen corresponds to a node of minimum degree in the

 65

undirected graph associated with the reduced matrix. In matrix terms, this corresponds to choosing the
entry from the diagonal that has the least number of entries in rows within the reduced matrix. This
ordering algorithm has proved remarkably resistance and, although based only on local criterion, does an
excellent job of keeping subsequent work and fill-in over a wide range of problems. George and Liu
(1989) study the evolution of the minimum degree ordering.

George (1973), in his later paper, proposed a different class of ordering based on a non-local strategy of
dissection. In his nested dissection approach, a set of nodes is selected to partition the graph, and this set
is placed at the end of the pivotal sequence. The subgraphs corresponding to the partitions are themselves
similarly partitioned and this process is nested with pivots being identified in reverse order. Minimum
degree, nested dissection, and several other symmetric orderings were included in the SPARSPAK
package. Empirical experience at the beginning of the 90s indicated that minimum degree was the best
ordering method for general or unstructured problems which is the class of problems under our application.

Although the minimum degree ordering is simple enough to describe, it is not quite so simple to implement
efficiently. There are three main issues:
select a pivot,
update a reduced matrix after selection of a pivot, and
update the degree counts.

For the first, it is easy to keep a list of nodes in order of increasing degree and to choose the node at the
head of that list each time. There are two ways in which this task can be made significantly more
efficient. The first is to observe that, once a node is selected, all nodes that were in a complete subgraph
(or clique) containing this node, have one degree less and so can immediately be eliminated without any
extra fill-in, and subsequently, all the nodes in the clique can be eliminated. This is usually termed mass
node elimination and was included in some early minimum degree codes. It is quite natural, in a finite
element like approach, to perform the minimum degree ordering on a graph where nodes in the same
degree clique are treated as a single node, and this was done by the minimum degree ordering algorithm in
the HSL code MA47 (Duff 1995). The second improvement to pivot selection stems from the observation
that, if two nodes of the same degree are not adjacent in the graph, they can be eliminated simultaneously.
This is termed multiple elimination.

The resolution of the second issue, graph update, was the main reason why minimum degree codes
improved by several orders of magnitude over the decade 1976-1986. The principal saving was made by
using the clique structure of the reduced matrix and updating this rather than individual edges of the graph.
This was discussed in the review by Reid (1987).

There are two main approaches to updating the degree counts. One is too have a threshold and compute
the new degrees only if they could fall below this threshold. The threshold must, of course, be changed
dynamically, at which point some recalculation of degrees is necessary. The second is to replace the
minimum degree count by an approximate degree count that is easier to compute. Recently Amestoy,
Davis, and Duff (Davis 1995) have designed an approximate minimum degree ordering (AMD) where the
bound is equal to the degree in many cases. They have found that their AMD ordering is almost
indistinguishable from the minimum degree ordering in equality but it is much faster to compute. It is only
within the last year that the supremacy of minimum degree has been challenged. The beauty of dissection
orderings is that they take a global view of the problem; their difficulty until recently has been the problem
of extending them to unstructured problems. Recently, there have been several tools and approaches that

 66

make this extension more realistic.

The essence of a dissection technique is a bisection algorithm that divides the graph of the matrix into two
partitions. If node separators are used, a third set will correspond to the node separators. Such a bisection
is then repeated in nested fashion to obtain an ordering for the matrix. Perhaps the bisection technique that
has achieved the most fame has been spectral bisection. In this approach, use is made of the Laplacian
matrix that is defined as a symmetric matrix whose diagonal entries are the degrees of the nodes and
whose off-diagonals are -1 if and only if the corresponding entry in the matrix is nonzero. This matrix is
singular because its row sums are all zero, but if the matrix is irreducible, it is positive semi-definite with
only one zero eigenvalue (called the Fiedler vector). This matrix can be used to define a bisection by
constructing a vector x that has components x i equal to +1 or -1, according to which partition node I lies

in. Then the quantity Axx
T

 is 4 times the number of edges between the two halves of the bisection. We

can thus obtain an optimal bisection by minimizing Axx
T

 subject to ∑ =
i

ix 0 with x i =±1. Since the first

constraint corresponds to finding a vector orthogonal to the vector of all ones, which is the eigenvector for
the zero eigenvalue, in the corresponding continuous problem it is the eigenvector corresponding to the
smallest nonzero eigenvalue that is of interest. Normally some variant of Lanczos algorithm is used to
compute this (Duff 1996). The graph is then bisected according to the components of this eigenvector.

The spectral method requires much computing time, does not always yield optimal bisections, and naturally
produces edge separators, requiring some postprocessing to obtain a node separator set. For these
reasons, this technique is not strongly favored, and there has been much current research on alternatives.
But for the duct net task it can be approved. The main reason of this is the necessity to make many
calculations for the duct net having topology fixed. This seems reasonable, to spend a comparatively big
time for preprocessing, but after this have a benefits of better ordering for a big number of different runs.

The other main approach to graph bisection is to perform graph reductions, compute a partition cheaply on
the resulting coarse graph, and from this construct a partition of the original graph, using some kind of
iterative improvement on the projection of this coarse partition on the finer graph. This approach is nested
and is termed a multilevel scheme. Multilevel schemes are very interesting and promising. Later we will
discuss them in application to the Newton method.

Solution of sets of sparse asymmetric equations. In the case of asymmetric systems usually a
Markowitz ordering (Markowitz 1957) or a column ordering based on minimum degree on the normal
equations is used together with a threshold criterion for numerical pivoting. The main recent activities for
asymmetric systems have been the development of methods based on partitioning and the production of
efficient codes using higher level BLAS operations. A decade ago, the only widespread use of partitioning
was to preorder the matrix to block triangular form prior to perform the analyze-factorize phase on the
block on the diagonal of that form. A major problem with this approach is that the partitioning does not
guarantee that the diagonal blocks are well conditioned, or even nonsingular. Thus some a posterior
measures must be taken to improve the stability of the factorization. This issue of stability was discussed
by Arioli, Duff, Gould and Reid (1990) and, more recently, methods for maintaining stability have been
developed by Hansen, Ostromsky and Zlatev (1994).

A related approach is to expand the matrix, perhaps artificially, in order to obtain a system that is larger

 67

and sparser. Normally, there is a choice of pivots for this system that would reduce it to the original
system. The logic of this that we might be able to do better by using the extra degree of freedom on the
expanded system. A simple example of this matrix stretching technique is the augmented system.

A major tool in the efficient implementation of codes for asymmetric systems has been the observation
presented by Gilbert and Pejerls (1988) that partial pivoting can be performed in time proportional to the
number of arithmetic operations, so avoiding any potentially costly sorting operations. A refinement of this
technique was provided by Eisenstat and Liu (1992), who suggested ways of pruning a search tree to
reduce work in the symbolic phase. Variants of this technique are used in nearly all-sparse partial pivoting
codes.

Frontal, multifrontal, and supernodal approaches for the solution of asymmetric problems have all seen
significant recent development. The HSL frontal code MA42, which solves asymmetric systems, was
redesigned to use standard Level 2 and Level 3 BLAS and can accommodate entry by both equations and
elements. If the matrix is close to symmetric in structure in the sense that a ij is usually nonzero then a ji

is, then methods adapted from symmetric multi-frontal approaches can be used, with the analyze phase

performed on he pattern of AA T+ . This approach can work well for the duct net case (almost

symmetric).

Preconditioning. One of the main problems with sparse LU factorization is that often the number of
entries in the factors is substantially greater than in the original matrix so that, even if the original matrix
can be stored, the factors cannot. If the original matrix can be stored, the possibility is to start a sparse
LU factorization but drop some fill-in entries so that the partial factors can still be stored. Algorithms for
doing this are called incomplete LU (or ILU) factorization and they differ depending on the criteria for
deciding which entries to drop. At one extreme, we could hold all the factors, while at the other we could
store no fill-ins. This partial or incomplete factorization is then used to precondition the matrix for iterative
solution, normally using a fairly standard Krylov-sequence based iterative technique like conjugate
gradients in the symmetric case or GMRES or BiCG when the matrix is asymmetric.

The main criteria for deciding which entries to include in an incomplete factorization are location and
numerical value. The commonest location-based criterion is to allow a set number of levels of fill-in, where
original entries have level zero, original zeros have level � and a fill-in position (I,j) has level Level ij

determined by

 { }1min

),min(1

++
≤≤

LevelLevel kjik
jik

 (3.81)

The other main criterion for deciding which entries to omit is to drop entries less than a predetermined
numerical value. Since it is usually not known a priori how many entries will be above a selected threshold,
the dropping strategy is normally combined with restricting the number of fill-ins allowed to any one
column. When using a threshold criterion, it is possible to change it dynamically during the factorization to
attempt to achieve a target density of the factors. Although the notation is not yet fully standardized, the
nomenclature commonly adopted for incomplete factorization is ILU(k). It happened when k levels of fill-
in are allowed and ILUT(á,f), for the threshold criterion when entries of modulus less than á are dropped
and the maximum number of fill-ins allowed in any columns is f.

 68

The use of incomplete factorizations as pre-conditioners for symmetric systems has a long pedigree and
good results have been obtained for a wide range of problems. An incomplete Cholesky factorization
where one level of fill-in is allowed (ICCG(1)) has proven to provide a good balance between reducing the
number of iterations and the cost of the computing and using the preconditioning. The situation with
symmetric systems is quite well analyzed and understood.

The situation for asymmetric systems are, however, much less clears. There have been many
experiments on using incomplete factorizations and there have been studies of the effect of orderings on
the number of iterations that show similar behavior to the symmetric case. However, there is very little
theory governing the behavior for general systems and indeed the performance of ILU pre-conditioners is
very unpredictable. In fact, a mayor problem is that the ILU factors can be more ill-conditioned than the
original system and so the preconditioned system can perform much worse than the original matrix with
respect to convergence of the iteration method.

The QR or LQ factorizations can also be used in the asymmetric case to derive an incomplete
factorization. Here the orthogonal factor need not be kept and the resulting incomplete triangular factor
can be used to precondition the normal equations. Pre-conditioners based on those factorizations are
generally more expensive to compute but they are usually more robust. One way of computing an
incomplete orthogonal factorization is to use incomplete modified Gram-Shmidt (IMGS) (Ostrowski 1966).

Another whole class of pre-conditioners are those where the direct method is used to solve a sub-problem
of the original problem. This is often used in a domain decomposition setting, where problems on sub-
domains are solved by the direct method but the interaction between the sub-problems is handled by an
iterative technique. A related example of this is the block projection methods.

Multi-grid techniques also often combine aspects off both iterative and direct methods. These methods
were originally developed for solving partial differential equations but developments such as algebraic
multi-grid extend their applicability to more general systems. The basic idea is to use corrections on a
sequence of coarser grids to update the required solution on a fine grid. It is common to use a direct
method for the solution on the coarsest grid with one or two iterations of usually a simple iterative method
on the other grids.

Iterative methods. Iterative methods can be divided for stationary properties not changed with
iterations and nonstationary matrix of the transformation changed after every some iterations methods and
non-stationary methods.

Stationary methods

Jacobi. The Jacobi method is based on solving for every variable locally with respect to the other
variables; one iteration of the method corresponds to solving for every variable once. The resulting method
is easy to implement but convergence is slow.

Gauss-Seidel. The Gauss-Seidel method is like Jacobi method, except that it uses updated values as
soon as they are available. In general the Gauss-Seidel method will converge faster than Jacobi, though
still relatively slowly.

 69

SOR. Successive over-relaxation (SOR) can be derived from the Gauss-Seidel method by introducing an
extrapolation parameter ù. For the optimal choice of ù, SOR may converge faster than Gauss-Seidel by an
order of magnitude.

SSOR. Symmetric successive over-relaxation (SSOR) has no advantage over SOR as a stand alone
iterative method; however, it is useful as a pre-conditioner for non-stationary methods.

The above mentioned methods are comparatively old. There are newer much more powerful and
effective tools based on non-stationary methods.

Non-stationary methods.
Non-stationary methods differ from stationary methods in a way they handle the information from the
changes at each iteration. Typically, constants are computed by taking inner products of residuals or other
methods arising from the iterative method. Description below is presented from Dongarra (1995).

Conjugate Gradient (CG). The linear conjugate gradient method was proposed by Hestenes and
Stiefel in the 1950s and is considered as the fundamental importance in scientific computing. Its
performance is strongly tied to the choice of the so-called pre-conditioner, which determines the
asymptotic rate of the convergence. The first nonlinear conjugate gradient method was introduced by
Fletcher and Reeves in 1960s, and is one of the earliest techniques for solving large nonlinear optimization
problems. Several variations of the original method have been proposed and are widely used in practice.
The importance of the non-linear conjugate gradient methods lies in the fact that they require no matrix
storage and are faster than the steepest descent method.

The Conjugate Gradient method proceeds by generating vector sequences of iterates, residuals
corresponding to iterates, and search directions used in updating the iterates and residuals. Although the
length of these sequences can become large, only a small number of vectors need to be kept in memory.
In every iteration of the method, two inner products are performed in order to compute update scalars that
are defined to make the sequences satisfy orthogonal conditions. The pseudo-code for the Preconditioned
Conjugate Gradient Method is follow:

 Compute xAbr
0)0(−= for some initial guess x

0

 For I=1,2,…

 Solve rxM ii)1()1(−− =

xr
i iT

i

)1(

)1(
)1(−

−
−=ρ

if I=1

x
)0()1(

=ρ

else

ρρβ 211
/

−−−
=

iii

ρβρ)1()1(

)1(

−−

− +=
ii

i

i z

endif

pAq i

i

)(

)(
=

 70

qpp
iT

iii
/

)1(−
=α

pxx
i

i

ii

α+= −1

qrr
i

i

ii

α−= −1

check convergence; continue if necessary.

For the Conjugate Gradient method, the error can be bounded in terms of the spectral condition number

è of the matrix AM
1−

. If ë1 and ë0 are the largest and smallest eigenvalues of a symmetric positive

definite matrix B, then the spectral condition number of B is è=ë1/ë0

Minimum Residual (MINRES) and Symmetric LQ (SYMMLQ). When A is not positive definite,
but symmetric, one can still construct an orthogonal basis for the Krylov subspace by three term’s
recurrence relations. In matrix form recurrence can be written as

 TRRA iii 1+=

where TI is an (I+1)⊗I tri-diagonal matrix is an tri-diagonal matrix. But a problem exists that an inner
product no longer defines. However, we can still try to minimize the residuals in the 2-norm by obtaining

{ } yRxrArArx i
iii =∈ − ,,...,, 0100

that minimizes

byTRbxA ii
i −=− +1 22

Here is the fact that, if ()rrrdiagD i
i

2

1

2

0

2
1 ,...,,≡+ , then DR ii

1
11

−
++ is an ortho-normal transformation

with respect to the current Krylov subspace exploited as: the element in the (I+1,I) position of Ti can be
annihilated by a simple Givens rotation and the resulting upper bi-diagonal system (the other sub-diagonal
elements having been removed in previous iteration steps) can simply be solved, which leads to
the MINRES method.

Another possibility is to solve the system eryT i
10= , as in the CG method (Ti is the upper i*i part of

T i). Other than in CG we cannot rely on the existence of a Cholesky decomposition (since A is not
positive definite). An alternative is to decompose Ti by an LQ-decomposition. This again leads to simple
recurrences and the resulting method is known as SYMMLQ .

 Conjugate Gradient on the Normal Equations: CGNE and CGNR. If a system of linear equations
Ax=b has a non-symmetric, possibly indefinite (but nonsingular) coefficient matrix, one obvious attempt at
a solution is to apply Conjugate Gradient to a related symmetric positive definite system, TAx=ATb. While
this approach is easy to understand and code, the convergence speed of the Conjugate Gradient method

 71

now depends on the square of the condition number of the original coefficient matrix. Thus the rate of
convergence of the CG procedure on the normal equations may be slow.

Several proposals have been made to improve the numerical stability of this method. The best known is
based upon applying the Lanczos method to the auxiliary system

 





=











00

b

x

r

A

AI
T

A clever execution of this scheme delivers the factors L and U of the LU-decomposition of the tri-
diagonal matrix that would have been computed by carrying out the Lanczos procedure with ATA
Another means for improving the numerical stability of this normal equations approach is based on the
observation that the AT A matrix is used in the construction of the iteration coefficients through an inner
product like (p,ATAp). This leads to the suggestion that such an inner product be replaced by (Ap,Ap).

Below a short review the common approach will be presented. Using this approach almost all modern
numerical methods for iterative solution of the linear equations can be developed.

Krylov subspace methods. Krylov subspace based methods can be viewed as polynomial-based
iterative schemes for solving systems of the form Ax=b, of dimension n. The general form of a polynomial
iterative scheme is given by

 ∑+=
− rxx jkjkk η1

(3.82)
where xAbr jj

−=

Krylov subspace based methods compute new approximations to the solution, xk , from the affine

subspace defined by

),(

00
ArKx k

+ (3.83)

where the Krylov subspace of dimension k is defined by

),,...,,,(),(
0

1

0

2

000 rArArArspanArK
k

k

−≡ (3.84)

and r 0 is the initial residual determined from the initial solution guess, x0 .

Two different approaches taken in the derivation of Krylov algorithms; namely, the minimal residual
approach and the orthogonal residual approach. The most promising are the algorithms based upon the
Arnoldi process (GMRES) and the non-symmetric Lanczos process (CGS, Bi-CGSTAB, TFQMP).
The most well known methods from this family: Method of steepest descent, Gauss-Seydel-type iteration,
Conjugate direction methods, and Orthodir

 72

Conclusions:

1. The universal tool for linear system of equations solution is not exist.
1. Choice for linear equations solver problem dependent and must be performed according the task

parameters by the code itself.
2. Parameters significant for the choice of the method are

• number of equations
• sparsity level
• non-linearity of the main task level
• warm start possibility
• number of nonzero members in the main matrix and in the factorization

3. For linear equations solution the next methods can be used
• for the unknowns number of several thousands is the combined unifrontal/multifrontal algorithm
• for the unknowns number of n*10,000 is the Krylov’s subspace methods with preconditioning

based on incomplete factorizations
• for the unknowns number of n*100,000 is the Krylov’s subspace methods with preconditioning

based on multi-grid or other many level approach.
5. The BLAS must be used as a basis for all condense matrixes calculations.
6. Sparsity can be effective used not only for equations solution but for Jacobian calculation as well.

The method for solution of linear systems must be task dependent. The different tasks approximately can
be classified as

• small tasks (number of unknowns is ≤ 1000)
• medium tasks (number of unknowns ≤ 10,000)
• big tasks (number of unknowns ≤ 100,000)
• super big (number of unknowns > 100,000)

For small tasks it is possible to use simple methods, based on full mode standard software from
LINPACK, based on direct solution techniques. Whenever the Jacobian shows no special structure but
turns out to be sparse and the size of the task medium or big sparse mode elimination techniques may be
successfully applied. As example, it is possible to use well-known MA28 package developed by Duff. In
the symmetrical case task the MA27 may be used. For the big and especially super big tasks the Krylov’s
method must be applied.

3.3 Control systems

Problem Formulation and Derivation of the Necessary Condition. For duct net design control task
it is possible to write the following

 Min F(y,u)

 C(y,u)=0 (3.85)

 y> 0, u > 0
where:

 73

Ry m∈

Ru mn−∈
n and m are positive integers satisfying n > m.

The functions f and C are considered smooth and defined as RCRf m→Ω→Ω : and ,: ,

where Ω is an open set of Rn containing { } { }0:0: ≥×≥ uuyy .

For the duct net case:
y is the vector of state variables,
u is the vector of control variables,
C(y,u)=0 is the discreetized state equation,
F(y,u) the sum of squares of the defects of equations yI=qi.

If the solution of Equations 3.85 have F(x,u) > 0, control is failed to handle control variables in the limited
needed. Problem described by Equations 3.85 can be solved by interior point Newton algorithm according
to the Vicente (1996).

Constraint qualifications and optimality conditions. In the notation there is







=

u

y
x

(3.86)

Also, (z)y and (z)w represent the sub-vectors of Rz n∈ corresponding to the y and u components,
respectively, and Ip represents the identity matrix of order p. The Lagrangian of f(x) with respect to the
equality constraints C(x)=0 is represented by l(x,ë)=f(x)+ëTC(x). The Jacobian matrix of C(x) is denoted
by J(x). Due to the partition of x in y and u, following takes place

 J(x)=(Cy(x) Cu(x)) (3.87)

Assumptions, applied to this approach.
Assumptions 1.

1. The functions f and C are twice continuously differentiable with Lipschitz second derivatives in Ω.
2. The partial Jacobian Cy (x) is nonsingular in Ω.

The method description. Let U be an open set containing {u: u>0} such that for all u U∈ exist a

solution y of C(y,u)=0 and such that the matrix Cy(x) is invertible for all x= ()xy TT T
, with u U∈ and

C(y,u)=0. Then exist a twice continuously differentiable function

 RUy n→:
 (3.88)

 74

defined by
 C(y(u),u)=0.

This allows reducing the minimization problem to the space of the control variables u

 Minimize f(y(u),u)
 Subject to y(u)>=0,u>=0. (3.89)

The optimality conditions and constraint qualifications used by Vicente (1996)) are Karush’s, Kuhn’s, and
Tucker’s (KKT) conditions. .
The diagonal matrix ()λ,xD with diagonal elements is described by

()() () ()
()





≤∇

≥∇=
 0),(if 1

0),(if ,
2

1

λ
λλ
xl

xlxxD
x i

x ii
ii

 (3.90)

Another significant diagonal matrix is),(λxE of order n with diagonal elements described by

()() ()() ()()

otherwise, 0

0, if ,
,



 >∇∇=

λλ
λ

xlxl
xE x ix i

ii

 (3.91)

Proposition 1. A non-degenerate point x* , with corresponding multipliers λ* , satisfies the second-order
sufficient optimality conditions if and only if it satisfies the first-order conditions and

() () () ()λλλλ ******
2

** ,,,, xExDxlxD xx +∇
 (3.92)

is a positive definite on the null space of () ()λ*** ,xDxJ .

Proposition 2. If x* is a regular point, then the matrix () ()xJxD T
*** ,λ has full column rank.

If the regular point x*, with corresponding Lagrange multipliers λ* , is such that Matrix 3.92 is positive
definite, then the matrix

() () ()
() 




 +∇
0,)(

,),(),(,

**

22

*

λ
λλλλ

xDxJ
xJxDxExlxD T

xx

is nonsingular.

The Newton's method applied to the system of nonlinear equations in x and ë

 75

() 0),(, 2 =∇ λλ xlxD x
 (3.93)

C(x)=0
 (3.94)

This algorithm is of the interior-point type, meaning that x is required always to be strictly feasible with
respect to the bound constraints. A linearization of Equations 3.93 and 3.94 is of the form

() () () ()





 ∇−=





∆




 +∇
)(

),(,

0)(

,),(),(,
2222

xC

xlxDs

xJ
xJxDxExlxD x

T
xx λλ

λ
λλλλ

 (3.95)

the second linear equations in Expression 3.95 is the linearized state equation. The first linear equation in
Expression 3.95 has been derived by applying the product rules to Equation 3.93 the case where
differentiability is existing.

Let us use the next notation: () sxDs λ, 1−=

After simple transformations it is possible to have from Expression 3.95:

() () () ()

()
()






 ∇−=





∆




 +∇
)(

),(,

0,)(

,),(,),(, 2

xC

xlxDs

xDxJ
xJxDxExDxlxD x

T
xx λλ

λλ
λλλλλ

 (3.96)

The form of the coefficient matrix in Expression 3.96, Assumptions 1, and Proposition 2, together imply
that the affine-scaling interior-point Newton algorithm is well defined in a neighborhood of a non-
degenerate regular point that satisfies the second-order sufficient optimality conditions.

For father description the next notation will be necessary

 





=

s

s
s

u

y
,

(3.97)

() ()
() () ()

() ,
,0

0,
, ,

,0

0,
, 





=





=

λ
λ

λ
λ

λ
λ

xE

xE
xE

xD

xD
xD

u

y

u

y
 (3.98)

and

 76

() ()
()

() ()
() () 





+∇

+∇=





∇
∇=∇

λ
λ

λ
λ

λ
xCxf
xCxf

xl

xl
xl

T
uu

T
yy

u

y
x

,

,
, (3.97)

Using this it is possible to rewrite the Newton equations as follows

() () () () () () ()
() () () () () () ()

() () 















+∇∇
∇+∇

0

,,,,,,

,,,,,,
22222

22222

xCxC

xCxDxExlxDxlxD

xCxDxlxDxExlxD

uy

T
uuuyyuuyu

T
yyyuyyyyy

λλλλλλ
λλλλλλ

() ()()
() ()()

















+∇

+∇
−=

















∆







•

)(

)(,

)(,
2

2

xC

xCxfxD

xCxfxD

s

s
T

uuu

T
yyy

u

y

λλ
λλ

λ
 (3.98)

From the first linear Equation 3.98 it is possible to obtain

()() () () () () () λλλλλλ −∇−





∇+∇−=∆ −−−−−)(),),(,,(222 xfxC

s

s
xlxCxExDxCxlxC y

T
y

u

y
yu

T
yyy

T
yyy

T
y

 (3.99)

The third linear equation can be rewritten as

() ())(xCsxCsxC uuyy −=+

(3.100)

since)(xC y is nonsingular, it is possible to obtain

sxWss u
n)(+=

(3.101)

where

()





−=
−

0

)(1 xCxC
s yn

(3.102)

is a particular solution of the linearized state equation, and

 77

()





−=
−

−

I

zCxCxW
mn

uy)(
)(

1

(3.103)

is a matrix whose columns form is a basis for the null space of the Jacobian matrix J(x).

The second linear Equation 3.98 can now be rewritten only in variables su by using the Formulas 3.100,
3.101, 3.102, and 3.103 from above.

()() () ()(),)(,)(),(xfsxHxWsxWxHxW nT
u

T ∇+−= λλ αα (3.104)

where

() () () ()
() () () ()








+∇∇
∇+∇=

−

−

λλλλ
λλλλλα

,,,,

,,,,
),(

222

222

xExDxlxl
xlxExDxl

xH
uuuuuy

yuyyyy
 (3.105)

is an augmented of the Hessian ()λ,2 xlxx∇ of the Lagrangian function l(x,ë). The augmented term

() ()
() ()








=




=
−

−

λλ
λλ

λ
λ

λ
,,0

0,,
),(0

0),(
),(

2

2

xExD

xExD
xG

xGxG
uu

yy

u

y
 (3.106)

takes into account the presence of the bound constraints in the variables y and u.

Affine-scaling interior-point Newton algorithm. In summary, the affine-scaling interior-point
Newton algorithm is the following:

1. Choose an initial point (x,ë) with x > 0
2. Until convergence do
2.1a Compute ()λ∆,s by solving Equation 3.96 for ()λ∆,s and then by setting sxDs),(λ= or,
equivalently,

2.1b Compute sn
as in Equation 3.102.

 Compute su by solving Equation 3.104)

 Compute () () () sxCxCss uuy
n

yy
1−−=

 Compute λ∆ by Equation 3.99

2.2 Set ()1,min

1
1 −

−=
− sX

α , where)1,0(∈τ .

Set the new iterate (x,ë) to (x,ë)+ ()λα ∆,s .

 78

This algorithm is locally well-defined around a point satisfies the standard Newton assumptions, i.e., a non-
degenerate regular point for which the second-order sufficient optimality conditions hold.
The q-quadratic rate of convergence of this algorithm is guarantee by the next Theorem.

Theorem 5. Lets Assumptions 1 hold and consider a sequence in the pair (x,ë) that satisfied the

second order sufficient optimality conditions. If ô is chosen so that ()),(1 1 λτ xFO=− , where

()
,

)(

),(,
),(

2

1 




 ∇=
xC

xlxD
xF

x λλλ

then a sequence converges with a q-quadratic rate. The corresponding sequence in z generated by
z=z(x,ë) converge r quadratic to ()λ*** ,xzz = .

Conclusions. The algorithm for solution of the control problem for airflow in duct networks as the
mathematical programming task is outlined according to Vicente (1996). This algorithm can be used as a
base for computer code development.

3.4 Final discussion

Different approaches for solving systems of nonlinear equations was analyzed. It was shown that the
more promising approaches are the family of Newton Affine Invariant methods, the Tensor methods and
the Homotopy methods.

If a good initial solution is known, the best choice is one of the Newton Affine Invariant methods. For
comparatively large problem, when time for solution is significant, the Tensor methods are a good choice.

For the most practical cases, when either: (1) time is deficient to search for a good initial solution, (2)
automation is needed for different types of evaluation of technical solutions, or (3) parametric evaluation is
necessary, Homotopy methods are the best.

All methods shall included into the computer code. The first version of the code should be based on the
Homotopy method as the most user friendly and robust. Moreover, Newton Affine Invariant methods and
Tensor methods can be used as a part of Homotopy method. In this case Homotopy method will be a
conceptual basis for solution.

4. Problem formalization

The proposed definition of the problem considers laboratory rooms, as well as supply and exhaust air
distribution systems, fume hoods, exfiltration and infiltration, fume hood fans and filters, and other auxiliary
fans as nodal parts of a network.

 79

At any time the mass of air entering the room is always equal to the mass of air leaving this room. This
includes air entering the room with infiltration or exiting the room with exfiltration. In spite of this equality,
laboratory spaces are always under either positive or negative pressure. Pressure in the room depends
not on the difference between supply and exhaust air but on the position of "zero-point", which is the
location where the positive pressure originated by supply system changes to the negative pressure
originated by the exhaust system. This position is a function of central supply and exhaust fans,
resistance of ducts and fittings, position of dampers, duct and construction leakage, open/closed doorways,
and performance of unitary, auxiliary, and/or manifolded fans. Doorways are assumed closed. However
air is leaking through door slits. Schematically, if a "zero-point" is "after" the room, the room pressure is
positive, and if "zero-point" is "before" the room, the room pressure is negative. The easiest way to control
"zero-point" is by changing the resistances of dampers either in supply or in exhaust/return duct connected
to the particular room.

It will be shown that the air conditioning systems under investigation are not the tree-networks studied by
the T-Method (1990) but a truly free topology 2-dimensional network with loops. Even a part of this
network, the central supply and the exhaust systems, can be associated with tree-network sub-systems.

The major difference between existing methods and the proposed one is that in the proposed method the
multi-fan multi-lab network simulation coexists with control system simulation and statistical modeling.

4.1 Topology

Topologically laboratory air distribution systems which include central supply, central exhaust systems,
many exhaust fans, rooms, and in/exfiltration can be represented by a cycle graph system. Topology of
such systems can be simplified when it is considered that a subtree represents the central supply system
where the supply fan(s) is the root. The central laboratory exhaust system is sometimes topologically
isomorphic to the central supply system. Such isomorphic supply and exhaust systems can be represented
by two tree-graphs connected at the terminals (Figure 3). Every root of such a tree-graph includes a
supply or an exhaust fan or a number of fans connected in parallel (often) or in series (seldom), and every
terminal is a connection to an internal laboratory space.

The most important benefit of the isomorphic topology is that the systems have a "limited cycle structure".
 The main cycles of such systems can be simplified by "gluing" two tree-graphs at their hanging nodes
(leaves). This allows one to identify the flow directions in the common arcs from supply to exhaust
avoiding the main difficulties of calculating the systems with cycles. The only difficulty with identifying
flow directions is the infiltration/exfiltration element since the pressure is unknown at the beginning of
calculation. However, this element of the network is always belongs to the branches.

The following four schematics of air distribution systems demonstrate the transformation of an air network
into a graph. All four schematics are only examples of topology formalization and do not pretend to be a
part of engineering design.

Figure 4 presents a constant volume supply and exhaust system with parallel fans and reheat coils
controlling temperatures in spaces #1, #2, and #3. The formalized topology of this system is presented on

Figure 5. Two nodes present each network element; one of which is an inlet and another is an outlet.

 80

Pressure difference between these nodes represents the pressure loss in the element. The exception to
this rule is the space/room, which assumes no pressure difference. Reheat coils control the temperatures
in the rooms. The use of constant volume terminals assumes that the pressure in the spaces is kept the
same as surrounding dampers BD1 through BD6 set it.

Figure 6 presents a variable air volume system with infiltration/exfiltration element in the space #3 and
exhaust stack. In this example maximum concentration of gasses at air discharged from the exhaust stack
is limited. This is warranted by using an air bypass damper CD4 sensoring air velocity on the top of the
stack as shown in Figure 6. The supply fan curve is controlled by the static pressure sensor located in the
supply duct. This sensor sets variable frequency drive VFD1 into a position that keeps static pressure in
the supply duct constant. Variable air volume terminals together with exhaust dampers CD1, CD2, and
CD3 control pressure and temperature in the rooms. This schematic is formalized on Figure 7.

Figure 8 presents a variable air volume system with air cascading and two fume hoods located in the
rooms. The variable volume terminal VAVT1 controls air flow supplied to the corridor. Air flow from the
corridor #1 is entering the rooms through cascading dampers C1 and C2. Auxiliary fan F4 supplies air to
the fume hood AFH1. There are two exhaust ducts in this room, one from the fume hood and the second
from the room itself. The second exhaust is balancing the room pressure when the fume hood is changing
the regime. The second fume hood in room #3 has an individual filter FL3 and individual exhaust fan F3.
The pressure in the room is controlled by the damper D3 similar to the room #2. This schematic is
formalized on Figure 9.

Figure 10 presents a variable air volume system with manifold fume hood system and supply and exhaust
plenums. This system is equipped with computer that analyzes the pressure and temperature in each room
and controls the variable frequency drive VFD2 at central exhaust fan. There are three fume hoods: one
in the room #1 served by the unitary exhaust fan F3, two in the room #2 served by the two individual fans
F4 and F5, and three in the room #3 served by the manifold system connected to the exhaust fan F6.
There is an additional pressure balancing exhaust fan F2 in the room #1. Also this room has an
infiltration/exfiltration element. This schematic is formalized on Figure 11. Even for this complicated
system the direction of flow can be easily identified for all arcs except the infiltration/exfiltration element in
room #1.

Figure 12 is similar to the previous Figure 10 however it does not have the central exhaust system since
the design amount of exhaust air is higher than necessary for ventilation. This is very often practical
design case.

 81

 Figure 4. Constant Volume Central Supply and Exhaust Reheat Systems

 82

Figure 5. Formalized Topology for Constant Volume Central Supply and Exhaust
Reheat Systems

 83

 Figure 6. Variable Air Volume Central Supply and Exhaust Systems

 84

Figure 7. Formalized Topology for Variable Air Volume Central Supply and
Exhaust Systems

 85

Figure 8. Variable Air Volume Central Supply and Exhaust Systems with
Cascading and Fume Hoods

 86

Figure 9. Formalized Topology for Variable Air Volume Central Supply and
Exhaust Systems with Cascading and Fume Hoods

 87

Figure 10. Variable Air Volume Central Supply and Exhaust Systems with
Plenums, Manifold Exhaust, and Computer Control.

 88

Figure 11. Formalized Topology for Variable Air Volume Central Supply and
Exhaust Systems with Plenums, Manifold Exhaust, and Computer Control.

 89

 Figure 12. Central Supply with Local and Manifold Exhaust.

 90

 Figure 13. Formalized Topology for Central Supply with Local and Manifold Exhaust.

 91

4.2 Control function

Control of fan discharge or resistance of dampers, terminal boxes, and sashes depends on location on their
sensors. The user will be able to locate these sensors in any place of the system. Such control parameters
will be:

 -- Static pressure,
 -- Total pressure,
 -- Air flow volume,
 -- Air flow volume difference,
 -- Air velocity,
 -- Static pressure difference,
 -- Air temperature.

As one can see, in case of air flow or static pressure differences, two sensors must be located. The user
must present following data for each control device:

 -- Control parameter,
 -- Sensor locations (two locations for flow or pressure differences),
 -- Initial setpoint,
 -- Minimum-maximum range limitation,
 -- Controller function.

Coefficients for a controller described in an algebraic polynomial equation will be a part of the user input.
The graphical input of this function should be evaluated. It will transmit the signal received from the
sensor to the control device as a response to a change in parameters. The possibility of simulating the
automatic reset of control parameters and setpoints will be investigated.

Fan operating point will be controlled by one of the following devices selected by the user: (1) discharge or
inlet damper, (2) inlet vanes, (3) pitch, or (4) variable frequency drive (VFD).

Similarly, it will be possible to control each damper from a sensor located in any place of the system
selected by the user, including duct, room, cabinet, fan or exhaust stack discharge. For example, an outside
air bypass damper in the exhaust plenum will start to open if the exhaust stack discharge velocity becomes
smaller than the air velocity setpoint assigned by the user (mostly around 3000 fpm). Another simulation
of control element (or exhaust fan) will be the bypass grille located in fume hoods.

4.3 Elements

In addition to a network, there is an important definition of system elements and system arcs. Arcs
represent scalars of air flow. Most elements are represented as arcs between two nodes, low pressure
and high pressure. Three arcs between four nodes (wye or tee) or four arcs between five nodes (cross)
represent junctions. Some elements like entries, infiltration/exfiltrations elements, and exits are associated

 92

with the terminal nodes. Others such as fans, dampers, fume hoods, BSC, many fittings are connected to
the intermediate nodes. A special definition is made for rooms: a single node rather than an arc present a
room. This means that a single pressure and a single flow characterize each room. The air resistance in
the room is ignored and the flow is equal to the total supply or total exhaust air.

Arcs are mostly ducts and plenums. Infiltration into a room from the atmosphere or exfiltration from a
room into the atmosphere is represented by an arc where the room and the atmosphere are pressure
nodes. A junction that connects three ducts: main, common, and branch has three arcs with different
flows and four nodes. The static pressure in the intermediate node will represent the average static
pressure in the junction. Each system arc and node is associated with a number of parameters. Following
is the list of major elements, arcs, and parameters:

Arc/node Element name Parameters

1-Arc Duct section Topological connections, Air flow, Shape, Size, Length,
Temperature, Velocity, Pressure loss, Static pressure at both
nodes, Leakage, Density, Viscosity, Reynolds number,
Roughness, Friction coefficient, Sum of C-coefficients related to
the section velocity,
Heat loss/gain

2-Arc Doorway slit at
closed door

Topological connections, Air flow, Equivalent size, Velocity,
Pressure difference, Static pressure at both nodes, Density,
Viscosity, C-coefficient

3-Arc Infiltration/
Exfiltration

Topological connections, Air flow, Equivalent size, Velocity,
Pressure difference, Density, Static pressure at both nodes,
Viscosity, C-coefficient

4-Arc Plenum (pressure
loss is neglected)

Topological connections, Air flow, Shape, Size, Length,
Temperature, Leakage, Static pressure

5-Arc Heating/Cooling Coil Topological connections, Air flow, Heating/cooling capacity,
Shape, Size, Temperature at both nodes, Average velocity,
Pressure loss, Static pressure at both nodes, Density at outlet,
Viscosity, C-coefficient

6-Node Zone/Room Topological connections, Static pressure, Temperature, Air flow,
Heat loss/gain

7-Node Dampers:
fire/smoke/back draft

Topological connections, C-coefficient at open position,
Open/close position

8-Node Dampers: control or
balancing

Topological connections, Type of damper and associated
geometry, Angle, C-coefficient

 93

9-Node Fittings:
 Entry
 Exit
 Transition
 Junction
 Obstruction
 Louvers
Fan/duct link

 Topological connections, Geometry, Size, C-coefficient, Other
information associated with the type of fitting (ASHRAE
Handbook 1995, Chapter 32 "Duct Design" or DFDB (1994)

10-Node VAV control box Topological connections, Pressure/temperature setpoint, C-
coefficient

11-Node Constant volume box Topological connections, Volume flow setpoint, C-coefficient

12-Node Fan Topological connections, Type of fan, Fan curve, Inlet/outlet
size, Density at inlet, Heat gain, Type of control, RPM,
Efficiency, Brake power, Inlet vanes percent of opening, Pitch
angle

13-Node Hood/canopy island Topological connections, Type, Size, C-coefficient

14-Node Sound attenuator Topological connections, C-coefficient

15-Node Fume hood or
biological safety
cabinet

Topological connections, Maximum sash and bypass free areas,
Function between free areas of sash and bypass, C-coefficient,
Operating schedule

The relationship between hydraulic resistance of fittings or equipment and actuators position is described
by C-coefficients (DFDB 1994). These coefficients are mostly presented in a table form, however for
some of them algebraic formulas exist (Idelchik 1996). In our opinion, the more general way of using C-
coefficients is the tables.

Following is the list of hydraulic equations for the main elements recommended for Bellair computer
program (units see above):

(1) Duct/Plenum.

Darcy-Weisbach equation

cf g

V
C

D
fL

P
2

2ρ










+=∆ ∑ (4.1)

Equivalent-by-friction diameter for rectangular ducts:

WH
WH

D f +
×= 2 (4.2)

 94

Air density

()

()T
PP Ws

++
−=

15.2731.287

378.0
1000ρ (4.3)

Reynolds number

 ν
VDh=Re (4.4)

For fully developed laminar-viscous flow when Re [2300

Re

64=f (4.5)

Altshul-Tsal's equation (ASHRAE 1997) for fully developed turbulent flow (Re >2300)

25.0

Re
6812

11.0 





+=′

hD
f

ε
 (4.6)

 if f' ≥ 0.018 then f = f'
 if f' < 0.018 then f = 0.85 f' + 0.0028

Air leakage

65.0

1 sL PCaG =∆ (4.7)

Heat loss/gain from/to a duct (ASHRAE 1997)

)()(. ambientductav TTcf

UPL
Q

−
= (4.8)

where:
 cf = converging factor, 1000 for SI units [12 for IP units]
 U = duct overall heat transfer coefficient, W [Btu/h-ft2-F]
 P = perimeter of duct, m [in]
 L = duct length, m [ft]

(2) Doorway slips . The technique for calculating infiltration and exfiltration presented in ASHRAE 1997
Handbook is based on Darcy-Weisbach equation solved in respect to flow:

ρ

P
ACG D

∆= 2
 (4.9)

 where:
 G = Air flow rate, cfm [m3/s]

 95

 CD = Discharge coefficient for opening, dimensionless
 A = Cross-section area of opening, ft2 [m2]
 ÄP = Pressure difference across opening, in.WG [Pa]
 ñ = Air density, lbm/ft3 [kg/m3]

The relation between the discharge coefficient CD and local resistance coefficient C is

C

CD

1= (4.10)

The local resistance coefficient for a thick-edged orifice is presented by Idelchik (1996, p.219, diagram
4-12):

 





−×





−+





−+





−=

2

0

375.0

1

0

2

2

0

75.0

1

0 11115.0
A
A

A
A

A
A

A
A

C τ (4.11)

where:
 A0 = Free orifice area, ft2 [m2],
 A1 = Wall area from inlet side, ft2 [m2],
 A2 = Wall area from outlet side, ft2 [m2],
ô = Function which depends on the ration between the thickness of orifice to its
 hydraulic diameter, [from 0 to 1.3, average=1]

hD

l
l

l
l

l =
+

+=×−= − ,
05.0

535.0
25.0,10)4.2(

8

8

ϕτ ϕ

 l = Orifice thickness, ft [m]

Assuming very large wall areas and low door thickness having 2.0=l and τ = 1.22, coefficients C is
2.72 and CD=0.606

(3) Infiltration/exfiltration. Similar to doorway slips.

(4) Plenum. Air leakage similar to duct leakage related to plenum surface and depends of leakage class.

(5) Heating/cooling coil. Unless C-coefficient is given, coil resistance is presented as pressure loss for
nominal flow. For simulation reason pressure loss has to be rearranged into C-coefficient:

ρ2

2

2
G

AP
C

∆= (4.12)

 where:
 C = Local resistance coefficient, dimensionless
 ÄP = Pressure loss at nominal flow, Pa [in.WG]
 G = Flow, m3/s [cfm]
 A = Coil cross-section area, m2 [ft2]
 ñ = Air density, kg/m3 [lbm/ft3]

 96

The outlet coil temperature is calculated as (simplified case):

Gccf

Q
TT

p
inout ρ)(

±= (4.13)

 where:
 cf = Unit converging, 1.0 for SI (60 for IP)
 Tin = Coil inlet temperature, °C [°F]
 Q = Heating/cooling load, kJ [Btuh]
 cp = Specific heat at constant pressure, kJ/(kg-°K)[Btu/lbm-°F]

The function of the controller changing heating/cooling load can be approximated as a polynomial

 dTcTbTaQ rrr +++= 23
 (4.14)

 where:
 Tr = Room temperature, °C [°F]
 a,b,c,d = Constants

(6) Room. It was mentioned above that pressure loss in a room could be neglected. However, static
pressure in a room and its sign that depends on position of "zero pressure" point is one of the most
important design parameter.

Thermal regime in a room is a function of heat balance that is the difference between heat loss and heat
gain. The temperature in the room is

Gccf

Q
TT

p
inr ρ)(

∑±= (4.15)

 where:
 cf = Unit converging, 1.0 for SI (60 for IP)
 Tr = Room temperature, °C [°F]
 ÓQ = The sum of heat gain/loss, kJ [Btuh]
 cp = Specific heat at constant pressure, kJ/(kg-°K)[Btu/lbm-°F]

The variable ÓQ includes of heat gain/loss from walls, ceiling, floor, doors and windows, partitions,
infiltration/exfiltration, people, equipment, appliances, electrical motors, and lights.

(7) Fire/smoke/backdraft damper. The local resistance C-coefficient for open damper is presented in
SMACNA book (SMACNA 1995).

(8) Control damper. The local resistance C-coefficient is presented in DFDB (1994) as a function of
angle, shape, type (butterfly, gate, parallel or opposed blades), number of blades, ratio of open area (for
gate), duct perimeter and blades length (for multi-blades).

(9) Fittings. C-coefficients for fittings can be obtained from DFDB (1994). Many tables, one-, two-, and

 97

three-dimensional represents them. These tables have to be interpolated either ones at the beginning of
calculation (fixed fittings) or at each iteration (variable fittings).

(10) VAV control box. C-coefficient should be obtained from manufacturers.

(11) Constant volume box. C-coefficient should be obtained from manufacturers.

(12) Fan. As mentioned above there is a number of ways to represent the flow-pressure characteristics
of a fan. The easiest way is to approximate the curve by a few lines. However, the best calculation
results can be obtained when the curve is approximated by a formula. This should avoid oscillations at
calculation. The formula recommended by Stoecker (Stoecker 1975) is proposed:

22

9
2

8

2

76
2

54

2

321 NPcNPcNPcNPcNcNcPcPccQ fffffff ++++++++= (4.16)

The coefficients c1 through c9 should be approximate automatically in a computer program for a
representative curve and recalculated for any other rotation using the "Fan Laws" (ASHRAE 1996)

2

1
21 N

N
QQ ff = (4.17)

2

2

1
21 





=

N
N

PP ff (4.18)

 (13) Hood/Canopy. C-coefficients for fittings can be obtained from DFDB (1994).

 (14) Sound attenuator. C-coefficients can be obtained from DFDB (1994) as a part of duct mounted
 equipment.

(15) Fume hood/Biological safety cabinet. C-coefficient, which for many types of fume hoods
depends on sash position, should be obtained from manufacturers.

5. Main flow chart

The air distribution systems in a large laboratory building will be divided into a number of units simulated
separately. It is proposed that each calculation unit will consist of only one central supply system with
many corresponding exhaust systems, individuals, manifolded, centralized or combined.

The proposed numerical method will perform four major calculations:

(1) Definition of air flows and pressures for known setpoints of control devices (damper openings, given
fan RPM, known opened area for sashes, etc.),

(2) Definition of setpoints for control devices,

 98

(3) Random selection of the positions of FH/BSC sashes,

(4) System performance analysis.

As a result of such calculation the user will receive air flows, air velocities, in all system sections and
pressures in all system nodes. This includes workspaces, manifolds, fume hood inlet sashes, stack
exhausts, and ductworks. Also, the user will receive fan operating points and fan characteristics, positions
of all system control devices, and corresponding electrical energy consumption. Air system performance
will be studied in the third step by randomly selected positions of sashes and other control and laboratory
units. The user will input the loading schedule for each unit and computer will randomize the position of
control device and create a total usage (diversity) factor as a recommendation for optimum design. There
are four major fragments of the program Bellair:

 (a) Preprocessor that includes data input, verification, and printout,
 (b) Solver that includes calculation routines,
 (c) Postprocessor that includes verification and printout of the results,
 (d) Database population and access.

Following is the flow chart of the modeling process:

(1) Preprocessor. In the flow chart (Figure 14) preprocessor is presented by a single block. This block
consists input data entry, including topology, duct size, fitting, fans, terminals, infiltration/exfiltration
elements, fume and BSC schedules, sensors, controllers and actuators, allowable parameter ranges in the
rooms, allowable velocity range in the opening of each sash, and other equipment. One of the main parts
of the preprocessor is data evaluation.

(2) Local Fitting Libraries. Computerized fittings selection and C-coefficients interpolating from tables
at each iteration takes substantial computer time for selecting the fittings from the global library on a hard
disk. A speed up process of creating and using local libraries was proposed in T-Duct (Tsal et.al. 1990)
and will be used in Bellair. It is base on the principle that fittings at the same systems are mostly identical.
 All fittings are divided into two types: fixed and variable. Fixed fittings are not changing C-coefficients
with iteration and can be calculated once only. Variable fittings must be calculated at each iteration. At
the beginning the program copies all fittings necessary for the calculated system from the global fitting
library on a hard disk. Then it analyzes each fitting and, if the fitting is fixed, it calculates the C-
coefficients and stores only its value into a local library of fixed fittings for future use. If the fitting is
variable, it stores the selection table (or formula) into a different small local library of variable fittings on
RAM. No more selection is needed from the global library on hard disk. According to T-Duct, this
procedure drastically reduces the CPU time and makes unnecessary the use of approximation formulas
for fittings. Notice that the resistance of FH/BSC sashes depends on its free area opening and belongs to
the variable fittings.

 99

(1) PREPROCESSOR (Input Data Entry and Verification:
topology, size, fittings, controls, FH/BSC schedules, etc.)

(2) Create Local Fitting Libraries:
Fixed and Variable

(3) Initialize Time

(4) Initialize Airflow and
Setpoints for Control System

Global Fitting Library

(5) Select Position of Sash for each FH/BSC
within Schedule According to Time

(6) Calculate C-coefficients for
Variable Fittings

(7) Calculate Airflow Distribution,
Pressures, Velocities

Airflow Converging No

(8) Control System Response
(set damper angles and fan operating points)

Converging of
Control Elements

(9) Parameters of Control
Nodes OUT of Range

Store Solution
and Parameters

N = max

Stop

Analyze
Convergence

YesNo
No

Yes

Yes

(10) Select M-time Randomly

No

M = max

(11) Calculate Usage Factor

Stop

No

Yes

(12) POSTPROCESSOR Print Stored
Solutions

Figure 14. Flow Chart of the Computer Program Bellair

 100

 (3) Initialize Time . Proposed computer program will include statistical analysis of sash positions that
depend on the time of the day and on the FH/ BSC schedules. The third block of the flow chart initializes
the time of the day used later to access the fume hood schedules.

(4) Initialize Air flow and Setpoints. In this block the air flow at each terminal arc will be initialized
based on the average air velocity (for example, 7 m/s). The air flows for the common duct sections will
be calculated. Then the setpoints of each damper and VFD will be initialized.

(5) Position of Sashes. Using the time of the day selected in the block 2 and the schedule for a particular
FH/BSC the program will select the position of the sash.

(6) Variable Fittings. Computation of C-coefficients has to be performed for variable fittings only using
the local fitting library located in RAM. These calculations use flows, velocities, and Re coefficients
which are changing at each iteration. Also, calculation is performed at this block for FH/BSC C-
coefficients based on the sash position selected in the previous block.

(7) Air flow Distribution. This block represents the major part of the solver that is the calculation of air
flow distribution based on pressure and air mass balancing equations using the one of the methods
explained above (Newton, Tensor, or Homotopy). The results of this calculation is the air flows,
velocities, and temperatures at each duct section, and pressures at each node, as well as fan flows and
total flows passing each element, including rooms. The true air flow distribution can be achieved as a
result of iteration process. Therefore, after block 7 has been executed, there is a check for convergence
and a return to the block 6 if convergence has not yet been achieved.

(8) Control System Setpoints. In the previous block air flow calculation was based on the initialized
setpoints. In this block setpoints will be assigned for each controller based on the actual air flows,
pressures, pressure differences, and velocities calculated in the block 7, and, after checking for the
convergence, calculating process will return to block 6. Convergence at this step means that, as results of
iteration, there is no significant change in setpoints for all control devices.

There is a possibility that, in spite of many iterations, converging does not occur after a large number of
iterations (N = max). This can happen because of the overdefined control system that produces unlimited
number of solution. The computer will detect such case and execution will be terminated in order to give
user an opportunity to analyze the system and to cure the problem.

(9) Range Checking. At previous steps air distribution is obtained for initially selected time of the day at
randomly opened sashes. At this time air flow, pressure difference, and temperature are checked at each
room and air velocity is checked at each sash and at stack discharge. If these parameters are out of the
minimum-maximum range presented in input data this case is considered as a violation and is stored on the
hard disk for further investigation. If there is no violation the execution will proceed to the next block.

(10) Time Selection. Next time is randomly selected. If the number of selections does not exceed the
maximum the process is returning to the block 5 for selecting the position of the sashes. Otherwise
calculation moves to the next block.

(11) Usage (diversity) Factor. Diversity factor is calculated for the supply system under investigation.

 101

This block includes the Postprocessor.

(12) Postprocessor. Postprocessor displays and prints all results of calculation.

6. Principles of software development

Computer program Bellair will be divided into five major parts:

 (1) GUI preprocessor
 (2) Global data base
 (3) Local data base
 (4) Solver
 (5) Postprocessor

The main principle of the program architecture is the modular approach using object oriented programming
language C++. The most possible user-friendly input will be developed. On-line data checking is one of
the most important parts of the preprocessor.

A flexible units selection system should be implemented where the user will be able to select individual
units from any unit system, as well as recommended SI, IP, and Metric systems.

Graphically entered topology is planed for the second version of the code. In the first version numerical
linkage between the nodes is proposed. However, selection of fittings and elements should be base on
their graphical representation.

The most difficult part of input data is fitting selection. In order to simplify fitting selection from a local
fitting library this part of the preprocessor will use drag-and-drop techniques with fitting pictures appearing
on the screen.

The second kind of simplification will be the preselection of fittings prior to their appearance on the screen
similar to the technique presented in T-Duct. Only applicable fittings will appear for each section. This
selection will be based on the following four conditions:

 -- Exhaust/return or supply system. Only fittings that belong to the required system are

selected. For example, exits will not be selected at all for exhaust and entries will no
 be selected for supply,

-- Duct shape. Only fittings with the same shape as calculated duct section would be
 displayed,

 -- Parent shape. Only fittings having the parent shape the same as parent for a calculated duct

section will be selected. For example, if a duct section is round but its parent is rectangular,
the junction fittings will be selected only having rectangular shape with round parent.

-- Parent size. C-coefficient for junction depends on size ratio between parent and children

 102

sections. Program will preselect only those junctions that satisfy the section-parent size
conditions: (1) section size equal its parent size or (2) section part is less size than its parent
size.

One of the most common mistakes made by a user is the selection of different junctions for the same node
during straight and branch sections data input. This will be prevented by automatic assignment of the same
junction to the linked section.

Similar to T-Duct, the most important variable will be mass flow not volumetric flow. Therefore, the
volume of flow entering a fan will never be equal to the flow volume at fan discharge.

Statistical analysis will be conducted either by a number of searches assigned by the user, maximum
computer time, or the standard deviation difference.

7. Software implementation plan

The main platform for the BELLAIR code is MS Windows 95/98/NT for IBM PC computers or
compatibles. Programming language is C++, recommended compiler is Visual C++, version 5.0 or higher.
 DEMO of the program Bellair will be installed on Internet.

Following steps has to be conducted for development and implementation of computer code:

Preprocessor consists main interaction routines between the user and software. The program
must be developed user-friendly considering unexperienced user having knowledge in duct design
but not in duct simulation. Fitting selection will be organized using drag-and-drop technique. Data
checking should be if possible checked while data entry and the messages should describe the
error as well as present recommendation for its correction. The messages should be divided into
two classes: fatal and warning. It is necessary to have an opportunity to return to any previous
screens. Full capability of insert/copying/moving/deleting any part of the data should be
implemented using data blocking. The most common user mistake, which is selection of different
junctions for the same node, has to be carefully diagnosed and accurately explained. Help screens
should includes examples. Graphic representation and selection shall be used for fitting selection.
Graphic input for topology and length has to be investigated. Following are the steps for developing
the preprocessor:

n Architecture
n Topology representation (graphical and numerical)
n Graphic selection of fittings
n Local fitting data base real time development
n Input data variables and their units
n Screens and menus
n Elements and fittings graphics
n Data checking and diagnostic
n On-line error messages
n Data manipulation routines (browse/insert/copy/move/delete)

 103

n Information accessed from the database
n Help index, screens, and messages
n Input data listing
n Classes

Data Base must be developed for fittings and equipment, roughness, specification and cost data.

n Fittings development and population
n Duct roughness
n Elements data
n Program messages (data driven information)
n Graphic representation of fittings and elements

Solver consists all calculation routines. It will include major three parts: hydraulics, control,
statistics. The hydraulics part will consist three following methods: Newton, tensor, and
homotopy. The selection of a method will be performed automatically by the program.

 Following are the development steps:

n Architecture
n Algorithm
n Local fitting library access
n Element data access
n Fitting tables access and approximation
n Duct hydraulics
n Heat loss and air leakage
n Newton method calculation
n Tensor method calculation
n Homotopy method calculation
n Control equipment simulation
n Statistical data selection and recording
n Classes
n Output data storing

Postprocessor will be developed for displaying and printing the results. It will be linked to the
Preprocessor which will allow to perform interactive studies. The development of Postprocessor

 includes:

n Output screens
n Graphical fan-system characteristics
n Graphical pressure diagrams
n Hard listing of the results
n Classes

 Installation program will allow user to install software on his computer.

 104

n Program installation routines using WISE program

 Demo development will include

n Algorithm
n Screens
n Subroutines
n Main program
n HTML programming
n Internet downloading

 Manual has to include following sections:

n Abstract
n License and disclaimer
n Program overview
n Hardware requirements
n Program installation
n Quick start
n Practicing with program
n Run and output
n Examples
n Data verification and validation

 Testing

n Alpha testing
n Beta testing
n Code correction and modification

 Publicity

n Articles publication
n Presentations at conferences
n Teaching seminars
n User group

Program support is one of the most important part of the implementation plan. In spite of the
fact that development of the software is plan to be budgeted, a support should be profit based.

 It includes:

n Perform software house functions
n Telephone support
n E-mail/fax written support

 105

n Update information

8. Conclusion

The purpose of the project is to develop and implement a practical tool, a computer code that can be used
by HVAC engineers in studying, designing, and retrofitting of air distribution systems in research
laboratories.

The proposed computer code, named Bellair, will allow HVAC engineers to calculate actual airflow,
pressures, and fan operating points in laboratory multi-fan air distribution systems as well as static pressure
in laboratory spaces at different operating conditions where space pressurization, confinement zoning, and
flow/pressure stability are the most important requirements. Also, the computer code will be capable of
modeling the control of each fan or damper from a sensor located in any place of the system specified by
the user including ducts, laboratories, cabinets, exhaust stack discharge, etc. The control parameters could
be static pressure, total pressure, airflow volume, air velocity, temperature, and pressure or temperature
difference.

There are four major steps of multi-fan system simulation:

(1) Defining air flows and pressures for initially set control devices,
(2) Adjustment of positions of control devices in accordance with their set-up,
(3) Random selection of the positions of fume hood/BSC’s sashes based on their loading

schedules,
(4) System performance analysis.

Network simulation problem requires a solution for a large system of simultaneous nonlinear algebraic
equations. Numerous methods capable of solving nonlinear algebraic equations for both branched and
cycled networks simulation are studied. The most promising approaches for cycle systems are the family
of Newton Affine Invariant methods, the Tensor methods, and the Homotopy methods. If a good initial
guess is known, the best choice is one of the Newton Affine Invariant methods. For a comparatively

large
problem, when time for solution is significant, the Tensor methods are a good choice. For the most
practical cases, when either: (1) time is deficient to search for a good initial guess, (2) automation is

needed
for different types of technical solutions evaluation, or (3) parametric evaluation is necessary, Homotopy
methods are the best. All three approaches are expected to be included into the computer code and

selected
automatically during the calculation.

All methods for solving nonlinear equations involve the solution of many sets of linear algebraic equations.
It is possible for small tasks to use simple methods based on direct solution techniques. Whenever there is
sparse matrix, sparse mode elimination techniques may be successfully used. For large and super large
tasks the Krylov’s method expected to be applied.

 106

Control system simulation requires the use of mathematical programming technique to get the minimization
of an objective function that describes residuals. The Vicente’s algorithm is suggested for solving this
problem.

As a result of such calculation user receives airflow, pressures, and velocities at all system sections and
pressures at all system nodes. This includes workspaces, manifolds, fume hood inlet sashes, stack
exhausts, and ductworks. User also receives fan operating points, position of all system control devices,
and electrical energy consumption. Air system performance planed to be studied by randomly selected
positions of sashes and other laboratory units. As soon as user inputs the loading schedule for each unit,
computer randomizes the position of sashes/units and calculates the total usage (diversity) factor as a
recommendation for optimum design.

There are four major fragments of the Bellair program:

(1) Preprocessor that contains of data input, verification, and printout,
(2) Solver that includes calculation routines,
(3) Postprocessor that performs verification and printout of the results,
(4) Populated database.

Following are the main steps of development and implementation of the Bellair program:

(1) Create the program architecture,
(2) Perform coding and debugging,
(3) Provide efficient testing,
(4) Develop and populate the data base
(5) Develop Demo and install on the Internet,
(6) Write the user manual,
(7) Provide program installment, update, and support.

The recommended platform for the Bellair code is MS Windows 95/98/NT for IBM PC computers,
programming language is C++, recommended compiler is Visual C++.

9. References and Bibliography

AABC 1965. Principles of Air Distribution, Los Angeles, Associated Air Balancing Council.

AABC 1983. Duct Leakage and Air Balancing. Technical Publication No. 2-83. Washington, DC:
Associated Air Balance Council.

Ahmed O., J.W.Mitchell, S.A.Klein 1998. "Experimental Validation if Thermal and Pressure Models in a
Laboratory Simulator", ASHRAE Transactions 1998, V.104, Pt.2

Allard, F. and Y. Utsumi 1992. "Air Flow through Large Openings", Energy and Buildings,
Vol 18, p. 133-146

 107

Altshul, A.D. and P.G. Kiselev 1975. Hydraulics and aerodynamics, 2d ed. Moscow: Stroisdat Publishing
House.

Andriyashev, M.M. 1932. Water systems calculation technique, Moscow

AMCA 1973. Fans and Systems, Standard 201-73, Arlington Height, IL

Arioli, M., I.S. Duff, N.I. Gould, and J.K. Reid (1990). Use of the P4 and P5 algorithms for in-core
factorization of sparse matrices, SIAM J. Sci. Stat. Comput 11, 913-927.

Arklin, H. and A. Shitzer 1979. Computer Aided Optimal Life-cycle Design of Rectangular Air Supply
Duct Systems. ASHRAE Transactions, Vol.85, Part 1, pp. 197-213.

ASHRAE 1997. Fundamentals handbook. Chapter 32, Duct design. American Society of Heating,
Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA

ASHRAE 1996. HVAC Systems and Equipment Handbook, Atlanta, GA

ASHRAE 1995. ASHRAE Standard 120P, Laboratory methods of determining flow resistance of air duct
and fittings, Atlanta, GA

ASHRAE 1995. HVAC Applications Handbook. Chapter 43. Sound and Vibration Control. Atlanta, GA

ASHRAE 1994. HVAC Duct Fitting Data Base, Research Project 574-RP, Atlanta, GA

ASHRAE 1993. ASHRAE Professional Development Seminars - Air System Design and Retrofit,
Atlanta, GA

ASHRAE/SMACNA/TIMA 1985. Investigation of Duct Leakage. ASHRAE Research Project 308.

Axley, J. 1987. "Indoor air quality modeling phase II report." U.S. National Bureau of Standards Report
NBSIR 87-3661.

Axley, J. 1988. "Multi-zone dispersal analysis by element assembly." Submitted to Building and
Environment.

Altshul, A.D., and P.G. Kiselev 1975. Hydraulics and aerodynamics, 2d ed. Moscow: Stroisdat Publishing
House.

ASHRAE. 1985. ASHRAE Handbook - 1985 Fundamentals, Chapter 33, "Duct design." Atlanta:
American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.

ASHRAE. 1989. ASHRAE Handbook - 1989 Fundamentals, Chapter 32, "Duct design." Atlanta:
American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.

Baccarat, S.A. 1987. “Inter-zone convective heat transfer in buildings: a review." ACME Journal of Solar
Engineering, Vol. 109, May.

 108

Baker, P.H. , Sharples, S., and Ward, I.C. 1987. "Air flow through cracks." Building and Environment,
Vol. 22 No. 4. pp. 293-304.

Bellman, R.E. 1957. Dynamic programming. New York: Princeton University Press.
Belsky, J.S. 1991. Design HVAC Systems for Laboratories, Pharmaceutical Engineering, July/August,
Vol.11, No.4

Bertschi, R.L. 1969. A Computer Program to Optimize the Life-cycle Cost of a Fan-duct System.
Urbana: University of Illinois (thesis).

Besant, Robert W., and Johnson, Alan B. 1995. "Reducing Energy Costs Using Run-Around Systems."
ASHRAE Journal, February

Bjorck A., and I.S. Duff. 1980. A direct method for the solution of sparse linear least squares problems.
Linear Algebra and Its Applications, 34:43-67

Blevins, R.D. 1984. Applied Fluid Dynamics Handbook. New York; Van Norstrand Reinhold.

Bouricha A. 1992. Solving large sparse systems of nonlinear equations and nonlinear least squares
problems using tensor methods on sequential and parallel computers. Ph.D. thesis, Computer Science
Department, University of Colorado at Boulder

Bouwman, H.B. 1982. Optimal Duct System Design. TNO Research Institute for Environmental Hygiene,
Indoor Climate Division, Delft, Netherlands.

Brooks, P.J. 1993. New ASHRAE Local Loss Coefficients for HVAC Fittings, ASHRAE Transactions,
V.99, Pt.2

Brooks, P.J. 1995. Duct Design Fundamentals, ASHRAE Journal, April

Butakov, S.E. 1949. Aerodynamic of industrial ventilation. Moscow: Profstroisdat Publishing House.

Chow S.N., Mallet-Paret, and Yorke 1978. Finding zeros of maps: homotopy methods that are
constructive with probability one, Math.Comp., 32 (1978), pp. 887-899.

Coad, W.J. 1985. Simplified sizing of pipes and ducts, HPAC, July

Coad, W.J. 1980. Energy Concepts of Air Handling Systems, HPAC, August

Colebrook, C.F. 1938-1939. "Turbulent flow in pipes with particular reference to the transition region
between the smooth and rough pipe laws." Journal of the Institution of Civil Engineers, London, Vol 11.

Coogan J.J. 1996. " Effect of Surrounding Spaces on Rooms Pressurized by Different Flow Control"
ASHRAE Transactions 1996, Vol.102, Pt.1

 109

Cross, H. 1936. "Analysis of Flow in Networks of Conduits or Conductors", University of Illinois,
Engineering Exp. Station, Bulletin #286, Urbana-Champaign

Data Research 1985. Utility Costs Forecasting, Data Resources Inc., Service Review, McGraw Hill
Publishing House.

Davis T.A. and I.S. Duff (1995) A combined unifrontal/multifrontal method for asymmetric sparse
matrices, Technical report TR-95-020, Computer and Information Science Department, University of
Florida.

Davis T.A. and I.S. Duff (1993) An asymmetric -pattern multi-frontal method for sparse LU
factorization.. Technical report RAL 93-036, Rutherford Appleton Laboratory.

Dennis Jr.,J.E and R.B. Schnabel 1983. Numerical methods for Unconstrained Optimization and Nonlinear
Equations. Prentice-Hall (Englewood Cliffs, New Jersey).

Dongarra J.J. 1995. Templates for the Solution of Systems of linear equations. Internet.

Dongarra, J.J., J. Du Croz, J.,I.S. Duff, and S. Hammarling 1990. A set of Level 3 Basic Linear Algebra
Subproagrams, ACM Trans. Math.Softw. 16, 1-17.

DFDB 1994. Data Fitting Database. ASHRAE, Atlanta, GA

Duff I.S. and J.K. Reid 1995. MA47, a Fortran code for direct solution of indefinite sparse symmetric
linear systems, Technical Report RAL 95-001, Rutherford Appleton Laboratory.

Duff Iain S. (1996) Sparse numerical linear algebra: direct methods and preconditioning'. Report TR-PA-
96-22, CERFACS, 42 Ave G Cotriolis, 31057 Toulouse Cedex, France.

Dean R.H., and J.Ratzenberger 1985. Computer Simulation of VAV system Operation, HPAC,
September

Dean R.H., F.J.Dean, and J.Ratzenberger 1985. Importance of Duct Design for VAV Systems, HPAC,
August

Demuren, A.O. and F.G. Ideriah 1986. "Pipe network analysis by partial pivoting method." Journal of
Hydraulic Engineering, Vol. 112, pp. 327-333.

Durfee, R.L. 1972. Measurement and Analysis of Leakage Rates from Seams and Joints of Air Handling
Systems. AISI Project No. 1201-351/SMACNA Project No. 5-71

Evans, R.A. and R.J. Tsal 1996. Basic Tips for Duct Design, ASHRAE Journal, July, 1996

Eisenstat, S.C. and J.W.Liu 1992. Exploiting structural symmetry in asymmetric sparse symbolic
factorization, SIAM J. Matrix Analysis and Applications 13, 203-211.

EPA 1995. Electric Sales and Revenue 1994, Energy Information Administration, Washington, DC

 110

EPA 1985. Utility Cost Forecasting, Energy Information Administration, Washington

Furi M., Vignolli A. 1994. On the regularization on nonlinear ill-possed problem in Banach spaces. - J.
Optimization Theory and Application, 4.3.

Hansen, P.C., T.Ostromsky, and Z.Zlatev 1994. Two enhancements in a partitioned sparse solver, in
J.J.Dongarra and J.Wasniewski, eds, Parallel Scientific Computing. Proceedings of the PARA94
Conference, Copenhagen 1994, Lecture Notes in Mathematics 879, Springer, Berlin, pp. 296-303.

Hohmann A. Inexact Gauss Newton Methods for Parameter Dependent Nonlinear Problems. Technical
report TR-93-13 (December 1993).

Markowitz, H.M. 1957. The elimination form of the inverse and its applications to linear programming,
Management Science 3, 255-269.

Farajian, T., G. Grewal, R.J.Tsal 1992. Post-accident Air Leakage Analysis in a Nuclear Facility via T-
Method Air flow Simulation. 22nd DOE/NDC Nuclear Air Cleaning and Treatment Conference, Denver

Farguhar, H.E. 1973. System Effect Values for Fans. ASHRAE Symposium Bulletin, Louisville, Kentucky

Fox, R.L. 1971. Optimization Methods for Engineering Design, Addison-Wesley Publishing Company,
Reading, MA

George A. 1973. Nested dissection of a regular finite element mesh, SIAM J. Numerical Analysis 10, 345-
363.

George, A. and L.W.H. Liu 1989. The evolution of the minimum degree ordering algorithm, SIAM
Review 31(1), 1-19.

Gilbert, J.R. and T.Peierls 1988. Sparse partial pivoting in time proportional to arithmetic operations, SIAM
J. Scientific and Statistical Computing 9, 862-874.

Graham, J.B. 1996. Duct System Pressure Gradient Diagrams and the Beer Cooler Problem, HPAC,
August

Gregory, W.S., K.H. Duerre, and G.A. Bennett 1975. Ventilation system analysis during tornado
conditions. Los Alamos Scientific Laboratory, Progress Report LA-6293-PR, July-December.

Hitchings, D.T. 1994. Laboratory Space Pressurization Control Systems, ASHRAE Journal, February

Horowitz, E. and S. Sahni 1976. Fundamentals of Data Structures. New York: Computer Science Press.

Houghton D.J., R. C. Bishop, A. B. Lovins, and B. L. Stickney, 1992. Space Cooling and Air Handling,
E-Source Inc.report, Boulder, Colorado, August

 111

Idelchik, I.E. 1996. Handbook of Hydraulic Resistance, 3rd edition, Begell Publishing House, Inc.

Isaacs, L.T., and K.G. Mills 1980. "Linear theory methods for pipe network analysis." Journal of the
Hydraulics Division, Proceedings, ASCE, July, pp. 1191-1201

Jeppson, R.W. 1976. Analysis of flow in pipe network. Ann Arbor, MI: Ann Arbor Science.

Kamenev, P.N. 1938. Flow dynamics of industrial ventilation. Moscow: Stroisdat Publishing House.

Klote, J.H. 1981. " A Computer Program for Analysis of Smoke Control Systems." National Bureau of
Standards, NBSIR 80-2157, Maryland

Konstantinov, U.M. 1981. Hydraulics. Kiev, USSR: Vischa Scola Publishing House.

Kovaric, M. 1971. Automatic Design of Optimal Duct Systems. Use of computers for environmental
engineering related to buildings. Washington: National Bureau of Standards, Building Science Series 39,
(October), pp.385-391.

Lam, C.F. and M.L.Walla, 1972. "Computer Analysis of Water Distribution Systems: Part I - Formulation
of Equations", ASCE, Vol. 98.

Larson, E.D. and L.J. Nilsson 1991. Electricity Use in Pumping and Air Handling Systems, ASHRAE
Transactions 97(2)

Leah, R.L., Pedersen, C.O, and Liebman, J.S. 1987. Optimization Using Quadratic Search - A Case Study
of a Chilled Water System, ASHRAE Transactions, Vol.93, Part 2.

Liddament, M., and Thompson, C. 1982. "Mathematical models of air infiltration - a brief review and
bibliography." Technical Note AIC 9, The Air Infiltration Centre, Bracknell, England.

Lobaev, B.N. 1959. Duct Calculation. Gosstroy Publishing House, Kiev, USSR. Available from the
Library of Congress, Washington D.C.

Martin D.W. and G.Peters 1963. "The Application of Newton's Method to Network Analysis by Digital
Computer" , Journal of Institute of Water Engineers, Vol.17

McDiarmid, Michael D. 1990. "Variable-Volume Fume Hoods: User Experience in a Chemistry Research
Laboratory." ASHRAE Transactions, Vol. 96, Part 2.

Merenkov,A.P, 1992. “Mathematical modeling and optimization of heating/water/oil and gas supply
systems,” Science Publishing House, Siberia branch, Novosibirsk, Russia.

Meyer, M.L. 1973. A New Concept: The Fan System Effect Factor, ASHRAE Symposium Bulletin,
Louisville, KY

Moody, L.F. 1944. Friction factor for pipe flow. ASME Transactions, Vol.66, p.671.

 112

Murtagh, B.A. 1972. An Approach to the Design of Networks. Chemical Engineering Science, Permagon
Press, Vol.27, pp.1131-1143

Murphy G.C. 1976. Practical Aspects of Ductwork Design, ASHRAE Journal, October

Neuman, V.A., and Guven, H.M. 1988. "Laboratory Building HVAC Systems Optimization." ASHRAE
Transactions 1988, Vol. 94, Part 2.

Neuman, V.A. and W.H. Rousseau 1986. " VAV for Laboratory Hoods - Design and Cost." ASHRAE
Transections, Vol. 92, Part 1A.

Nocedal J. and S.Wright 1998. Numerical Optimization. Internet

Novak U., K.Weimann 1991. A Family of Newton Codes for Systems of Highly Nonlinear Equations.
Technical Report TR-91-10 (December 1991).

Nillson, L.J. 1993. Energy Systems in Transition, Department of Environmental and Energy Systems
Studies, Lund, Sweden

Numerical methods for Nonlinear Algebraic Equations. Edited by P.Rabinowitz. Gordon and Breach
science publishers 1970.

Ortega J.M. and W.C.Rheinboldt 1970. Iterative solution of nonlinear equations in several variables. New
York: Academic Press.

Ostrowski, A. 1966. Solution of equations and systems of equations, 2nd ed. New York: Academic Press.
Peters G., and J.H. Wilkinson. The least squares problem and pseudo-inverses. Computer J., 13:309-
316,1970.

Petzold L.R., K.E. Brenan, S.L. Campbell. 1989. The Numerical Solution of Initial Value Problems in
Differential-Algebraic Equations, Elsevier Science Publishing Co.

Rabinowitcz 1970. “Numerical methods for Nonlinear Algebraic Equations, Gordon and Breach science
publishers.

Reid, J.K. 1987. Sparse matrices, in A. Iserles and M.J.D. Powell, eds, The State of the Art in Numerical
Analysis, Oxford University Press, Oxford, pp. 59-85.

Rheinboldt W.C. 1982. On the computation of critical boundaries on equilibrium surfaces, SIAM J.
Numer. Anal., 18 (1982), pp.653-669.

Rheinboldt W.C. and J.V. Burkardt 1983. Algorithm 596: A program for a locally parameterized
continuation process, ACM Trans. Math. Software, No.9, pp. 236-241.

Rozell, J.M. 1974. Duct Turning Vanes in 90° Elbows, ASHRAE Transactions 80(2):53

Said, M.N.A. 1988. "A review of smoke control models." ASHRAE Journal, Vol. 30, No 4, April.

 113

Scott K.B., 1986. Don't Ignore Duct Design for Optimized HVAC Systems, Specifying Engineer, No. 62,
January

Shifrinson, B.L. 1937. New Method for District Water System Optimization, Heat and Power, No.2,
Moscow, (Feb.), pp. 4-9. Available from the Library of Congress, Washington D.C.

SMACNA 1995. HVAC Duct Construction Standards - Metal and Flexible, 2nd Edition, Sheet Metal and
Air Conditioning Contractor's Association, Chantilly, VA

SMACNA 1990. HVAC Systems - Duct Design, third edition

SMACNA 1985. HVAC Air Duct Leakage Test Manual

SMACNA 1975. Industry Practice for Industrial Duct Construction

SNIP 1976. II-33-75, Gosstroy, Stroysdat, Part II, Chapter 33, Moscow, USSR

Stoecker, W.F., R.C. Winn, and C.O. Pedersen 1971. Optimization of an Air-supply Duct System. Use of
computers for environmental engineering related to buildings. National Bureau of Standards, Building
Science Series 39, October

Stoecker, W. F., L. P. Rinck, and J. P. Wegrzyn 1974. Simulating flow rates, pressures, and temperatures
in central chilled water systems. Second Symposium of the Use of Computers for Environmental
Engineering Related to Buildings, Paris, June 13-15.

Swami, M.V., and Chandra, S. 1988. "Correlations for pressure distribution on buildings and calculation of
natural-ventilation air flow." ASHRAE Transactions, Vol. 94, Part 1.

Swim, W.B. 1984. Analysis of Duct Leakage ETL Data from ASHRAE RP 308

Schnabel, R.B. and P Frank 1984. “Tensor methods for nonlinear equations”, SIAM J. Numer. Anal., 21,
pp.815-843

Tihonov A.N., V.Y.Arsenin 1986. "The methods for ill-posed problems solution" Moscow, "Nauka"

T-DUCT Computer Program Manual 1994. Netsal & Associates, California

Tsal R.J., J. Bell 1998. "Laboratory Air Distribution." Laboratory Air Distribution Design Guide, CIEE
and Lawrence Berkeley National Laboratory, San-Francisco, 1998

Tsal, R.J., H.F. Behls, and R. Mangel 1988. T-Method Duct Design, Part I: Optimization Theory,
ASHRAE Transactions, Vol. 92, Part 1A

Tsal, R.J., H.F. Behls, and R. Mangel 1988. T-Method Duct Design, Part II: Calculation Procedure and
Economic Analysis, ASHRAE Transactions, Vol. 92, Part 1A

 114

Tsal, R.J., H.F. Behls, R. Mangel 1990. Duct Design Part, III: T-Method Duct Simulation. ASHRAE
Transactions, Vol. 96, Part 2

Tsal, R.J., H.F. Behls, L.P.Varvak, 1998. T-Method Duct design. Part IV: Duct Leakage Theory,
ASHRAE Transactions, Vol. 104, Part 2.

Tsal, R.J., H.F. Behls, L.P.Varvak 1998. T-Method Duct Design, Part V: Duct Leakage Calculation
Technique and Economics. ASHRAE Transactions, Vol. 104, Part 2.

Tsal, R.J. and L.P. Varvak 1992. Duct Design Using the T-Method with Duct Leakage Incorporated.
ASHRAE Research Project 641-RP

Tsal, R.J. and H.F. Behls 1990. Using the T-Method for Duct System Design, ASHRAE Journal, March

Tsal, R.J. and H.F. Behls 1989. "Ducting" In Technology Menu for Efficient End Use of Energy,
University of Lund, Gerbagatan Lund, Sweden

Tsal, R.J. and P.W. Othmer 1989. New Method for Duct Design, CLIMA 2000. The Second International
Congress on Heating, Refrigerating and Air Conditioning, Saraevo, Yugoslavia

Tsal, R.J. 1988. Calculation Techniques for Optimum Duct Design and Flow Simulation, ASHRAE
Research Project 516-RP and Fluor Research Project 321563, Irvine, CA

Tsal, R.J., and H.F. Behls 1988. Fallacy of the Static Regain Duct Design Method, ASHRAE Technical
Data Bulletin, ASHRAE, Atlanta, GA

Tsal, R.J. and M.S. Adler 1987. Evaluation of Numerical Methods for Ductwork and Pipeline
Optimization, ASHRAE Transactions, Vol.93, Part 1

Tsal, R.J. and H.F. Behls 1986. Evaluation of Duct Design Methods. ASHRAE Transactions, Vol. 92,
Part 1A

Tsal, R.J. and E.I. Chechik 1968. Use of Computers in HVAC Systems. Kiev: Budivelnick Publishing
House. Available from the Library of Congress, Washington D.C. ,service number TD153.T77

Tsal, R.J. and N.Z. Shor 1967. The use of the steepest descent method for calculating flow distribution in
a duct system. Economical cybernetics and operation research, No.2. Institute of Cybernetics Publication,
Kiev, USSR

Tsao Tsu-Chin 1992. "Variable Air Volume Heating, Ventilation, and Air Condition (HVAC) Control
System Model", Department of Mechanical and Industrial Engineering, University of Illinois, Urbana-
Champaign, Technical report UILU-ENG 92-4032, Illinois

Vicente L.N. 1996. Trust-Region Interior Point Algorithms for a Class of Nonlinear Programming
Problems, Ph.D. thesis, Department of Computational and Applied Mathematics, Rice University,
Houston, Texas

 115

Walton, G.N. 1982. "Air flow and multi-room thermal analysis" ASHRAE Transactions, Vol. 88,
Part 2.

Walton, G.N. 1984. "A computer algorithm for predicting infiltration and interroom air flows." ASHRAE
Transactions, Vol. 90, Part 1.

Walton, G.N. 1989. " AIRNET - a Computer Program for Building Air flow Network Modeling",
NISTIR 89-4072, National Institute of Standard and Technology, Maryland

Watson L. T. 1986. Numerical linear algebra aspects of globally convergent homotopy methods. SIAM
Review Vol.28,No.4,December

Watson L. T. , S.C. Billups, and A.P. Morgan 1985. HOMPACK: A suite of codes for globally
convergent homotopy algorithms, Tech. Rep. 85-34, Dept. of Industrial and Operations Eng., Univ. of
Michigan, Ann Arbor, MI, 1985.

Wendes 1986. Sheet Metal Estimating, Wendes Engineering and Constructing Services, Inc.

Williams, G.J. 1995. Air Systems Basics, Heating/Piping/Air Conditioning, May

Wood, D.J., and A.G.Rayes 1981. "Reliability of algorithms for pipe network analysis." Journal of the
Hydraulics Division, Vol. 107, pp. 1145-1161.

